blob: fe83fab3ed0bf06a3578d3c393f82f064c66cb45 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
//Function to round-up a value such that it is divisible by 5
function[v] = round_five(w)
v = ceil(w)
rem = pmodulo(v,5)
if (rem ~= 0)
v = v + (5 - rem)
end
endfunction
function[] = plot_format()
//Get the handle of current axes
g = gca()
//Give labels and set label properties
g.labels_font_color=5
g.font_size=3
g.grid=[1,1]
g.box="off"
endfunction
//Obtain path of solution file
path = get_absolute_file_path('solution4_11.sce')
//Obtain path of data file
datapath = path + filesep() + 'data4_11.sci'
//Clear all
clc
//Execute the data file
exec(datapath)
//Calculate permissible bending stress sigmab (N/mm2)
sigmab = Sut/fs
//Distance of B l (mm)
l = pdist
//Increment length by 20mm and plot the bending moment variation over cantilever
//Infinite for loop
for i = 1:1:%inf
Mb(i) = (P * 1000)*(l)
len(i) = l
if(l == dist)
break
end
l = l + 20
end
plot(len,Mb)
plot_format()
title('Variation of bending moment against cantilever length')
xlabel('Cantilever Length(mm)')
ylabel('Bending Moment (Hogging) (N-mm)')
//Calculate maximum bending moment at A Mbmax (N-mm) from the plot
Mbmax = max(Mb)
//Assume the width of the cross-section to be 1mm w
w = 1
//Calculate the value of y (mm)
y = w
//Calculate second moment of area I (mm4)
I = (w * ((ratio * w)^3))/12
//Calculate the width of the cross-section (mm)
w = ((Mbmax * y)/(I * sigmab))^(1/3)
w = round_five(w)
//Calculate the depth of the cross-section d (mm)
d = 2 * w
//Print results
printf('\nWidth of the cross-section(w) = %f mm\n',w)
printf('\nDepth of the cross-section(d) = %f mm\n',d)
|