blob: ace6887538805586624715a5beae8c17358aa5f4 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
// Y.V.C.Rao ,1997.Chemical Engineering Thermodynamics.Universities Press,Hyderabad,India.
//Chapter-8,Example 6,Page 281
//Title: Enthalpy and entropy departure using the SRK equation of state
//================================================================================================================
clear
clc
//INPUT
T=427.85;//temperature of n-octane vapour in K
P=0.215;//pressure of n-octane vapour in MPa
S=1.0786;//constant used in the SRK equation of state,from Example(3.15)
alpha=1.3079;//constant used in the SRK equation of state,from Example(3.15)
a=5.0180;//constant used in the SRK equation of state,from Example(3.15) in (m^6 Pa mol^-2)
b=1.6426*10^-4;//constant used in the SRK equation of state,from Example(3.15) in m^3/mol
B=9.9282*10^-3;//factor used in the Cardan's method for solving the SRK equation of state,from Example(3.15) (no unit)
Z=0.9191;//compressibility factor taken from Example (3.15) (no unit)
R=8.314;//universal gas constant in J/molK
Tc=569.4;//critical temperature of n-octane in K
//CALCULATION
da_dT=(-a*S)/(sqrt (alpha*T*Tc));//calculation of da/dT using Eq.(8.44)
dep_h=(R*T*(Z-1))+((((T*da_dT)-a)/b)*log ((Z+B)/Z));//calculation of the enthalpy departure using Eq.(8.42) in J/mol
dep_s=(R*log (Z-B))+((1/b)*(da_dT)*log ((Z+B)/Z));//calculation of the entropy departure using Eq.(8.43) in J/molK
//OUTPUT
mprintf("\n The enthalpy departure for n-octane vapour using the SRK equation of state = %f J/mol\n",dep_h);
mprintf("\n The entropy departure for n-octane vapour using the SRK equation of state = %0.4f J/mol K\n",dep_s);
//===============================================END OF PROGRAM===================================================
// DISCLAIMER: NUMERICAL ERROR OBSERVED IN ENTHALPY DEPARTURE FUNCTION CALCULATION. FOR THE GIVEN INPUT DATA, THE ANSWER GIVEN IN THE BOOK "-890.22 J/mol" WAS FOUND TO BE NUMERICALLY INCORRECT.
|