1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
clear;
clc;
printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 8.5 Page 509 \n'); //Example 8.5
// Length of Blood Vessel
//Operating Conditions
um1 = .13; //[m/s] Blood stream
um2 = 3*10^-3; //[m/s] Blood stream
um3 = .7*10^-3; //[m/s] Blood stream
D1 = .003; //[m] Diameter
D2 = .02*10^-3; //[m] Diameter
D3 = .008*10^-3; //[m] Diameter
Tlm = .05;
kf = .5; //[W/m.K] Conductivity
//Table A. Water Properties T = 310 K
rho = 993; //[kg/m^3] density
cp = 4178; //[J/kg.K] specific heat
u = 695*10^-6; //[N.s/m^2] Viscosity
kb = .628; //[W/m.K] Conductivity
Pr = 4.62; //Prandtl Number
i=1;
//Using equation 8.6
Re1 = rho*um1*D1/u;
Nu = 4;
hb = Nu*kb/D1;
hf = kf/D1;
U1 = (1/hb + 1/hf)^-1;
L1 = -rho*um1*D1/U1*cp*2.303*log10(Tlm)/4;
xfdh1 = .05*Re1*D1;
xfdr1 = xfdh1*Pr;
Re2 = rho*um2*D2/u;
Nu = 4;
hb = Nu*kb/D2;
hf = kf/D2;
U2 = (1/hb + 1/hf)^-1;
L2 = -rho*um2*D2/U2*cp*2.303*log10(Tlm)/4;
xfdh2 = .05*Re2*D2;
xfdr2 = xfdh2*Pr;
Re3 = rho*um3*D3/u;
Nu = 4;
hb = Nu*kb/D3;
hf = kf/D3;
U3 = (1/hb + 1/hf)^-1;
L3 = -rho*um3*D3/U3*cp*2.303*log10(Tlm)/4;
xfdh3 = .05*Re3*D3;
xfdr3 = xfdh3*Pr;
printf("\n Vessel Re U(W/m^2.K) L(m) xfdh(m) xfdr(m)\n Artery %i %i %.1f %.2f %.1f \n Anteriole %.3f %i %.1e %.1e %.1e \n Capillary %.3f %i %.1e %.1e %.1e",Re1,U1,L1,xfdh1,xfdr1,Re2,U2,L2,xfdh2,xfdr2,Re3,U3,L3,xfdh3,xfdr3);
//END
|