blob: 20610d7e49cb0d73389c8818d8c7308e346ee1be (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
clear;
clc;
printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 1.2 Page 11 \n')// Example 1.2
// Find a) Emissive Power & Irradiation b)Total Heat Loss per unit length
d=.07; //[m] - Outside Diameter of Pipe
Ts = 200+273.15; //[K] - Surface Temperature of Steam
Tsurr = 25+273.15; //[K] - Temperature outside the pipe
e=.8; // Emissivity of Surface
h=15; //[W/m^2.k] - Thermal Convectivity from surface to air
stfncnstt=5.67*10^(-8); // [W/m^2.K^4] - Stefan Boltzmann Constant
//Using Eq 1.5
E = e*stfncnstt*Ts^4; //[W/m^2] - Emissive Power
G = stfncnstt*Tsurr^4; //[W/m^2] - Irradiation falling on surface
printf("\n (a) Surface Emissive Power = %.2f W/m^2",E);
printf("\n Irradiation Falling on Surface = %.2f W/m^2",G);
//Using Eq 1.10 Total Rate of Heat Transfer Q = Q by convection + Q by radiation
q = h*(%pi*d)*(Ts-Tsurr)+e*(%pi*d)*stfncnstt*(Ts^4-Tsurr^4); //[W]
printf("\n\n (b) Total Heat Loss per unit Length of Pipe= %.2f W",q);
//END
|