summaryrefslogtreecommitdiff
path: root/405/CH8/EX8.18/8_18.sce
blob: 69f26eb1ca615eb24d55a32aa310d434b0776248 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
clear;
clc;
printf("\t\t\tExample Number 8.18\n\n\n");
// heater with constant heat flux and surrounding shields 
// Example 8.18 (page no.-446-449)
// solution

sigma = 5.669*10^(-8);// [W/square meter K^(4)]
T6 = 293;// [K] temperature of room
E1 = 0.8;
E2 = 0.4;
E3 = 0.4;
E4 = 0.4;
E5 = 0.4;
// in reality, surfaces 2,3,4, and 5 have two surfaces each; an inside and an outside surface. we thus have nine surfaces plus the room, so a 10 body problem is involved. of course, from symmetry we can see that T2 = T4 and T3 = T5.
// we designate the large room as surface 6 and it behaves as E6 = 1.0. 
// the shape factors of the inside surfaces are obtained from figure 8-12 and 8-14:
F16 = 0.285;
F61 = F16;
F13 = 0.24;
F15 = 0.24;
F31 = 0.24;
F51 = 0.24;
F12 = 0.115;
F14 = 0.115;
F24 = 0.068;
F42 = 0.068;
F35 = 0.285;
F53 = 0.285;
F32 = 0.115;
F52 = 0.115;
F34 = 0.115;
F25 = 0.23;
F23 = 0.23;
F45 = 0.23;
F43 = 0.23;
F21 = 0.23;
F41 = 0.23;
F26 = 0.23;
F46 = 0.23;
F11 = 0;
F22 = 0;
F33 = 0;
F44 = 0;
F55 = 0;
// for the outside surfaces,
F_26 = 1;
F_36 = 1;
F_46 = 1;
F_56 = 1;
// Where the underscore indicate the outside surfaces.
// for the room 
Eb6 = sigma*T6^(4);// [W/square meter]
// for surface 1 with constant heat flux, we use equation (8-108a) and write
// J1-(F12*J2+F13*J3+F14*J4+F15*J5+F16*J6) = 1.0*10^(5)               GIVEN             (a)
// because of the radiant balance condition we have
// (J2-Eb2)*E2*A2/(1-E2) = (Eb2-J_2)*E2*A2/(1-E2)
// and      Eb2 = (J2+J_2)/2                                                            (b)
// Where underscore indicates the outside radiosity. a similar relation applies for surfaces 3,4, and 5. thus we can use equation (8-106a) for inside surface 2
// J2-(1-E2)*(F21*J1+F23*J3+F24*J4+F25*J5+F26*J6) = E2*(J2+J_2)/2                       (c)
// and for outside surface 2
// J_2-(1-E2)*(F_26*J6) = E2*(J2+J_2)/2                                                 (d)
// Equations like (c) and (d) are written for surfaces 3,4, and 5 also, and with the shape factors and emmissivities inserted the following set of equations is obtained
// J1-0.115*J2-0.24*J3-0.115*J4-0.24*J5 = 1.0012*10^(5)                         1
// -0.138*J1+0.8*J2-0.2*J_2-0.138*J3-0.0408*J4-0.138*J5 = 57.66                 2
// 0.2*J2-0.8*J_2 = -250.68                                                     3
// -0.144*J1-0.069*J2+0.8*J3-0.2*J_3-0.069*J4-0.05*J5 = 60.16                   4
// 0.2*J3-0.8*J_3 = -250.68                                                     5
// -0.138*J1-0.0408*J2-0.138*J3+0.8*J4-0.2*J_4-0.138*J5 = 57.66                 6
// 0.2*J4-0.8*J_4 = -250.68                                                     7
// -0.144*J1-0.069*J2-0.057*J3-0.069*J4+0.8*J5-0.2*J_5 = 60.16                  8
// 0.2*J5-0.8*J_5 = -250.68                                                     9
// We thus have nine equations and nine unknowns, which may be solved by matrix method
Z = [1 -0.115 -0.24 -0.115 -0.24 0 0 0 0;-0.138 0.8 -0.138 -0.0408 -0.138 -0.2 0 0 0;0 0.2 0 0 0 -0.8 0 0 0;-0.144 -0.069 0.8 -0.069 -0.05 0 -0.2 0 0;0 0 0.2 0 0 0 -0.8 0 0;-0.138 -0.0408 -0.138 0.8 -0.138 0 0 -0.2 0;0 0 0 0.2 0 0 0 -0.8 0;-0.144 -0.069 -0.057 -0.069 0.8 0 0 0 -0.2;0 0 0 0 0.2 0 0 0 -0.8];
C = [1.0012*10^(5);57.66;-250.68;60.16;-250.68;57.66;-250.68;60.16;-250.68];
J = Z^(-1)*C;
J1 = J(1);// [W/square meter]
J2 = J(2);// [W/square meter]
J3 = J(3);// [W/square meter]
J4 = J(4);// [W/square meter]
J5 = J(5);// [W/square meter]
J_2 = J(6);// [W/square meter]
J_3 = J(7);// [W/square meter]
J_4 = J(8);// [W/square meter]
J_5 = J(9);// [W/square meter]
// the temperatures are thus computed from equation (b):
Eb2 = (J2+J_2)/2;// [W/square meter]
T2 = (Eb2/sigma)^(1/4);// [K]
T4 = T2;// [K]
Eb3 = (J3+J_3)/2;// [W/square meter]
T3 = (Eb3/sigma)^(1/4);// [K]
T5 = T3;// [K]
// for surface 1 we observed that
q = 1*10^(5);// [W/square meter]
Eb1 = q*(1-E1)/E1+J1;// [W/square meter]
// and 
T1 = (Eb1/sigma)^(1/4);// [K]
printf("temperature of all surfaces are following ");
printf("\n\n\t T1 = %f K",T1);
printf("\n\n\t T2 = %f K",T2);
printf("\n\n\t T3 = %f K",T3);
printf("\n\n\t T4 = %f K",T4);
printf("\n\n\t T5 = %f K",T5);

// surfaces 2,3,4, and 5 as one surface
// we now go back and take surfaces 2,3,4, and 5 as one surface, which we choose to call surface 7. the shape factors are then
F16 = 0.285;
F61 = 0.285;
F17 = 1-0.285;
A1 = 2.0;
A7 = 6.0;
// THUS
F71 = A1*F17/A7;
F77 = 1-2*F71;
F76 = F71;
F_76 = 1.0;
// then for surface 1 we use equation(8-109a) to obtain 
// J1-(F17*J7+F16*J6) = 1.0*10^(5)
// using Eb7 = (J7+J_7)/2, we have for the inside of surface 7 
// J7*[1-F77*(1-E7)]-(1-E7)*(F71*J1+F76*J6) = (J7+J_7)*E7/2
// while for the outside we have 
// J_7-(1-E7)*F_76*J6 = (J7+J_7)*E7/2
// when the numerical values are inserted, we obtain the set of three equations:
// J1-0.715J7 = 1.0012*10^(5)
// -0.143*J1+0.486*J7-0.2*J_7 = 59.74
// 0.2*J7-0.8*J_7 = -250.68
// Solving above three equations by matrix method
Z = [1 -0.715 0;-0.143 0.486 -0.2;0 0.2 -0.8];
C = [1.0012*10^(5);59.74;-250.68];
J = Z^(-1)*C;
J1 = J(1);// [W/square meter]
J7 = J(2);// [W/square meter]
J_7 = J(3);// [W/square meter]
// the temperatures are thus computed as before
Eb7 = (J7+J_7)/2;// [W/square meter]
T7 = (Eb7/sigma)^(1/4);// [K]
Eb1 = q*(1-E1)/E1+J1;// [W/square meter]
T11 = (Eb1/sigma)^(1/4);// [K]
printf("\n\n from second method T1 = %f K",T11);
printf("\n\n so there is a difference of %f K between the two methods",T11-T1);