blob: 67d09cc49c5fb44ab05c4ab1cef5423d80ebc72a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
clear;
clc;
printf("\t\t\tExample Number 7.11 \n\n\n");
// reduction of convection in ar gap
// Example 7.11 (page no.-347)
// solution
Tm = 300;// [K] mean temperature of air
dT = 20;// [degree celsius] temperature difference
R = 287;// [] universal gas constant
g = 9.81;// [m/s^(2)] acceleration due to gravity
p_atm = 101325;// [Pa] atmospheric pressure
// consulting table 7-13(page no.-344), we find that for gases, a value Grdel_into_Pr<2000 is necessary to reduce the system to one of pure conduction.
// at 300 K the properties of air are
k = 0.02624;// [W/m degree celsius]
Pr = 0.7;// prandtl no.
mu = 1.846*10^(-5);// [Kg/m s]
Beta = 1/300;
// we have
Grdel_into_Pr = 2000;
// Part A for spacing of 1cm
del = 0.01;// [m] spacing between plate
p = sqrt((Grdel_into_Pr*((R*Tm)^(2))*mu^(2))/(g*Beta*dT*del^(3)*Pr));// [Pa]
// or vacuum
vacuum = p_atm-p;// [Pa]
printf("vacuum necessary for glass spacings of 1 cm is %f Pa",vacuum);
// Part B for spacing of 2cm
del1 = 0.02;// [m] spacing between plate
p1 = sqrt(Grdel_into_Pr*(R*Tm)^(2)*mu^(2)/(g*Beta*dT*del1^(3)*Pr));// [Pa]
// or vacuum
vacuum1 = p_atm-p1;// [Pa]
printf("\n\n vacuum necessary for glass spacings of 2 cm is %f Pa",vacuum1);
|