blob: e3358f35d02b3c644d77acf4399c99b1829f6666 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
//Example 6.8
//Determine the
//(a)The RMS value of the power fluctuation
//(b)The RMS noise current at the output of the detector
clear;
clc ;
close ;
//Given data
B=100*10^6; //Hz - BANDWIDTH
S_rinf_by_Pebarsquare=10^(-15); //per Hz - RIN VALUE
e=1.602*10^(-19); //Coulumbs - CHARGE OF AN ELECTRON
eeta=0.6; //*100 percent - QUANTUM EFFICIENCY
lambda=1.55*10^(-6); //metre - WAVELENGTH
h= 6.626*10^(-34); //J/K - PLANK's CONSTANT
c=2.998*10^8; //m/s - VELOCITY OF LIGHT IN VACCUM
Pe_bar=2*10^(-3); //Watt - INCIDENT POWER
//(a)The RMS value of the power fluctuation
RMS_value=sqrt(S_rinf_by_Pebarsquare*B);
//(b)The RMS noise current at the output of the detector
RMS_noise_current=e*eeta*lambda/(h*c)*RMS_value*Pe_bar;
//Displaying the Results in Command Window
printf("\n\n\t (a)The RMS value of the power fluctuation is %0.2f X 10^(-4) W.",RMS_value/10^(-4));
printf("\n\n\t (b)The RMS noise current at the output of the detector is %0.2f X 10^(-7) A.",RMS_noise_current/10^(-7));
|