blob: 6b9fd554a76282fe3d9d6d36bf826a791ce6eaf1 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
// Book - Power System: Analysis & Design 5th Edition
// Authors - J. Duncan Glover, Mulukutla S. Sharma, Thomas J. Overbye
// Chapter - 5 : Example 5.10
// Scilab Version 6.0.0 : OS - Windows
clc;
clear;
Comp = 30/100; // Compensation in percent
Vs = 765; // Sending end voltage in kV
Vr = Vs; // Receiving end voltage in kV
Z = 97.02; // Absolute eqivalent pi circuit value ; Taken from Ex 5.3
PRmaxun=5738 // Maximum power that can be delivered by uncompensated line(From example 5.5)
F1 = sind(87.210); // Eqivalent pi circuit angle ; Taken from Ex 5.3
X1 = Z*F1; // Eqivalent series reactance without compensation in Ohm ; taken from Ex 5.3
Zcap = -(%i)*(1/2)*Comp*X1; // Impedance of series capacitor in Ohm
ABCD = [1 Zcap; 0 1]; // From figure 5.4 for series impedance the ABCD matrix
ABCD2 = [ 0.9313*exp(%i*0.209*%pi/180) 97.0*exp(%i*87.2*%pi/180);
1.37*10^(-3)*exp(%i*90.06*%pi/180) 0.9313*exp(%i*0.209*%pi/180) ]; // The ABCD parameters taken from Ex 5.2
ABCDeq = ABCD*ABCD2*ABCD; // The eqivalent ABCD matrix of the compensated line
Aeq = abs(ABCDeq(1,1)); // Absolute value of the line parameter A
thetaAeq = atand(imag(ABCDeq(1,1))/real(ABCDeq(1,1))); // Angle value of the line parameter A
Beq = abs(ABCDeq(1,2)); // Absolute value of the line parameter B
thetaBeq = atand(imag(ABCDeq(1,2))/real(ABCDeq(1,2))); // Angle value of the line parameter B
PRmax=(Vs^2/Beq)-(Aeq*Vs^2/Beq)*cosd(thetaBeq-thetaAeq); // maximum power that can be delivered
dif=(PRmax/PRmaxun)*100-100; // Percentage difference in power delivered between compensated and uncompensated line
printf('The theoretical maximum power that this compensated line can deliver is %d MW',PRmax)
printf('\nThe power delivered by compensated line is %.2f percent more than that of uncompensated line',dif)
|