blob: 69180967b4a66e6797f0b51eec07a6543030288f (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
// Book - Power System: Analysis & Design 5th Edition
// Authors - J. Duncan Glover, Mulukutla S. Sharma, Thomas J. Overbye
// Chapter - 4 : Example 4.7
// Scilab Version 6.0.0 : OS - Windows
clc;
clear;
V = 345; // Line Voltage in kV
T = 795000; // Size of the Conductor in cmil
D = 1.108; // Diameter of the conductor in inch
f= 60; // Frequency in Hz
e = 8.854*10^-12;
r = (D/2)*0.0254; // Radius of the copper conductor in metre
Dsc = sqrt((r)*(0.40)); // Equivalent radius of the two onductor bundle
Deq = nthroot([10*10*20], 3); // Eqivalent GMR of a onductor in metres from Ex 4.5
Can = (2*%pi)*(e)/(log(12.6/0.0750))*(1000)*(200); // Deviation of the capacitance in Farad
w = (2*%pi*f); // Angular Velocity in rad/sec
Yan = (%i*w*Can); // Shunt admitance-to-neutral in Siemens
e = (V/sqrt(3));
Ichg = (abs(Yan)*e); // Charging Current of Phase A
Qc3fi = (abs(Yan)*(345)^2); // Total reactive power supplied by the three-phase line in MVAR
printf('Charging Current of Phase A is (Ichg) = %0.3f kA/phase', Ichg);
printf('\n Total reactive power supplied by the three-phase line is (Qc3fi)= %0.2f MVAR', Qc3fi);
|