blob: 241d21cbcd8e05304ccff7dd85050110c7821fdb (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
//===========================================================================
//chapter 6 example 20
clc;
clear all;
//variable declraration
Ts = 300; //number of turns in secondary winding
Tp = 3; //number of turns in primary winding
Is = 5; //current in A
Zs = (0.583)+%i*(0.25); //secondary impedance Ω
n1 =10;
n2 =5;
//calculations
KT =Ts/Tp; //turn ratio
Es = Is*Zs; //secondary voltage in volts
Nm = n1*Es; //total magnetising amp-turns
Ni =n2*Es; //total iron loss amp-turns
Im =Nm/Tp; //magnetising componenet of exciting current in A
Ie = Ni/Tp; //
I0 = Im+%i*Ie; //exciting current on primary side in A
I01 =sqrt(((real(I0))^2)+((imag(I0))^2))
alpha = atan(Ie/Im); //energy component of exciting current in A
alpha1 = (alpha*180)/%pi
theta = atan(imag(Zs)/real(Zs));
theta1 = (theta*180)/%pi
x = sin(((theta1+alpha1)*%pi)/180)
Ip = (KT*Is)+(I01*x); //primary current in A
y = cos(((theta1+alpha1)*%pi)/180);
b =(180/%pi)*((I01*y)/(KT*Is)); //phase angle
//result
mprintf("primary current = %3f. A",y);
mprintf("\nphase angle = %3.3f ",b);
|