1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
clear
//variable declaration
// Let the x, y, z be the mutually perpendicular directions
pr=(0.3)
PX=(15) //Loading in x-direction,KN
PY=(80) //Loading in Y-direction(compressive),KN
PZ=(180) //Loading in Z-direction,KN
//Area in X-,Y-,Z-Direction is AX,AY,AZ respectively,mm^2
AX=(10*30)
AY=(10*400)
AZ=(30*400)
//stress devoloped in X-,Y-,Z- direction as px,py,pz respectively,N/mm^2
px=PX*1000/AX
py=PY*1000/AY
pz=PZ*1000/AZ
//Noting that a stress produces a strain of p/E in its own direction, the nature being same as that of stress and µ p E in lateral direction of opposite nature, and taking tensile stress as +ve, we can write expression for strains ex, ey, ez.
E=2*100000 //young's modulus,N/mm^2
ex=(px/E)+(pr*py/E)-(pr*pz/E)
ey=(-pr*px/E)-(py/E)-(pr*pz/E)
ez=(-pr*px/E)+(pr*py/E)+(pz/E)
ev=ex+ey+ez //Volumetric strain
volume=10*30*400
Changeinvolume=ev*volume
printf("\n Change in volume= %0.2f mm^3",Changeinvolume)
|