blob: a052a3f1219c290b40551040505997e8972aa3cb (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
Given State Table
q | x=0 x=1 | z
--------------------------------
A | C D | 0
B | D A | 0
C | E D | 0
D | B A | 1
E | C D | 1
Step 1 produces five SP Partitions
P1 = (ACE)(BD)
P2 = (ADE)(BC)
P3 = (AE)(B)(C)(D)
P4 = (A)(BD)(C)(E)
P5 = (A)(B)(CE)(D)
Step 2 requires three sums
P1 + P4 = (ACE)(BD)--> P6
P3 + P4 = (AE)(BD)(C)--> P7
P4 + P5 = (A)(CE)(BD)--> P8
P7 + P8 = (ACE)(BD)--> P6
There are eight non trivial SP partition, of which two are two block and none are output consistent
|