blob: 8049c60bf3cdd800c9877e5dd77431d99b1e4200 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
//Calculate the Equilibrium Constant for the reaction and the emf of the cell
//Example 10.4
clc;
clear;
E1=1.72; //Standard Reduction Pontential for cathode in V
E2=0.771; //Standard Reduction Pontential for anode in V
Edes=E1-E2; //Standard Electrode Pontential for Electrochemical cell in V
F=96500; //Faraday's constant in C mol^-1
v=1; //Stoichiometric coefficient
R=8.314; //Gas constant in J K mol^-1
T=298; //Temperature in K
K=exp((Edes*F*v)/(R*T)); //Equilibrium constant
printf("(a)Equilibrium constant = %.1f*10^16",K*10^-16);
C1=50.0*0.10/1000; //Number of moles of Fe ion initially present in mol
C2=10.0*0.10/1000; //Number of moles of Ce ion initially present in mol
V=0.060; //Total volume of the solution in L
x=2.3*10^-20; //Number of moles Ce at equilibrium in mol
C3=(C2-x)/V; //Number of moles of Ce plus 3 ion at equilibrium in mol
C4=(C2-x)/V; //Number of moles of Ferric ion at equilibrium in mol
C5=(C1-(C2-x))/V; //Number of moles of Ferrous 2 ion at equilibrium in mol
C6=x/V; //Number of moles of Ce plus 4 ion at equilibrium in mol
K1=(C3*C4)/(C6*C5); //Equilibrium constant
Edes1=0.771; //Standard Electrode Pontential for Electrochemical cell in V
E=Edes1+0.0257*log(C4/C5); //emf of the cell in V
printf("\n(b)emf of the cell = %.2f V",E);
|