blob: 29010c20ca74994a5d5b8905f1f529a02db3841c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
///Chapter No 7 Fluid Mechanics
///Example 7.21 Page No:131-132
///Find Bernoulli's equation
///Input data
clc;
clear;
L1=300; //Length of pipe in m
D11=0.9; //Diameter at higher end in m
D12=0.6; //Diameter at lower end in m
S=0.85; //Specific gravity
Q1=0.08; //Flow in l/s
P1=40*10^3; //Pressure at higher end in kPa
pi1=3.14; //pi constant
rho=1000; //Rho constant
g1=9.81; //Gravity constant
slop=1/50; //1 in 50
//Calculation
//Datum line is passing through the center of the low end,therefore
Z2=0;
Z1=slop*L1;
//Q=A1*V1=A2*V2 Continuity eqation
V11=Q1/((pi1/4)*(D11^2)); //Frome continuity eqation, discharge
V12=Q1/((pi1/4)*(D12^2)); //Frome continuity eqation, discharge
///Bernoulli's equation
P2=(((((P1/(rho*S*g1))+(V11^2/(2*g1))+Z1)-(V12^2/(2*g1))+Z2))*(S*rho*g1))*10^-3;
///Output
printf('Z1= %f m \n ',Z1);
printf('continuity eqation discharge V11= %f m^3 \n ',V11);
printf('continuity eqation, discharge V12= %f m^3 \n',V12);
printf('bernoullis equation= %f Kpa \n ',P2);
|