1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
// determine blade angles at hub,mean and tip diameters
clc
Dt=4.5 // meter
Dh=2 // meter
p=20e6 //watts
N=150 // rpm
nh=0.94 // hydraulic efficiency
n0=0.88 // overall efficiency
h=21 // head
g=9.8
Q=(p)/(n0*h*9800) //
mprintf('\n Q =%f m3/s',Q)
vf=(4*Q)/(%pi*(Dt^2-Dh^2)) // velocity of flow
mprintf('\n Vf = %f m/s',vf)
Vw=(60*g*h*nh)/(2*N*%pi) // velocity of whirl
mprintf('\n rVw = %f',Vw)
D=(Dt+Dh)/2 // diameters
mprintf('\n D =%f',D)
rm=D/2
mprintf('\n rm =%f',rm)
Vm1=Vw/rm
mprintf('\n Vm1= %f m/s',Vm1)
rt=rm+0.625
Vm2=Vw/rt
mprintf('\n Vm2 =%f m/s',Vm2)
rt=rm-0.625
Vm3=Vw/rt
mprintf('\n Vm2 =%f m/s',Vm3)
uh=(%pi*Dh*N)/60
mprintf('\n uh=%f m/s',uh)
um=(%pi*D*N)/60
mprintf('\n um=%f m/s',um)
ut=(%pi*Dt*N)/60
mprintf('\n ut=%f m/s',ut)
b1h=vf/(uh-Vm3)
mprintf(' hub : ')
mprintf('\n tan(pi-beta1h)= %f',b1h)
be=atand(b1h)
B1h=180-be
mprintf('\n B1h = %f degree',B1h)
B2=vf/uh
mprintf('\n B2h =%f degree ',atand(B2))
mprintf(' mean : ')
b2h=vf/(um-Vm1)
mprintf('\n tan(pi-beta1h)= %f',b2h)
be1=atand(b2h)
B2h=180-be1
mprintf('\n B1m = %f degree',B2h)
B2m=vf/um
mprintf('\n B1m =%f degree ',atand(B2m))
mprintf('\ ')
mprintf('\ ')
mprintf('\ ')
mprintf(' Tip: ')
b3h=vf/(ut-Vm2)
mprintf('\n tan(pi-beta1h)= %f',b3h)
be2=atand(b3h)
B3h=180-be2
mprintf('\n B1m = %f degree',B3h)
B3m=vf/ut
mprintf('\n B1m =%f degree ',atand(B3m))
|