summaryrefslogtreecommitdiff
path: root/3812/CH5/EX5.1/5_1.sce
blob: b8e7ad45ef3d578bebedca7fb8a3e53a4103e457 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
//Example 5.1:
//Continuous Time Fourier Transform of a
clear;
clc;
close;
// Analog Signal
A =1;//Amplitude
Dt = 0.005;
t = 0:Dt:10;
xt=exp(-A*t);
//Continuous-time Fourier Transform
Wmax=2*%pi*1; //Analog Frequency = 1Hz
K=4;
k=0:(K/1000):K;
W=k*Wmax/K;
XW=xt*exp(-sqrt(-1)*t'*W)*Dt;
XW_Mag= abs(XW);
W=[-mtlb_fliplr(W), W(2:1001)];
XW_Mag=[mtlb_fliplr(XW_Mag),XW_Mag(2:1001)];
[XW_Phase,db]=phasemag(XW);
XW_Phase=[-mtlb_fliplr(XW_Phase),XW_Phase(2:1001)];
//Plotting Continuous Time Signal
a=gca();
a.y_location="origin";
plot(t,xt);
xlabel('t in sec.');
ylabel('x(t)')
title('Continuous Time Signal')
//Plotting Magnitude Response of CTS
subplot(2,1,1);
a = gca();
a.y_location = "origin";
plot(W,XW_Mag);
xlabel('Frequency in Radians/Seconds---> W');
ylabel('abs(X(jW))')
title('Magnitude Response (CTFT)')
//Plotting Phase Reponse of CTS
subplot(2,1,2);
a = gca();
a.y_location = "origin";
a.x_location = "origin";
plot(W,XW_Phase*%pi/180);
xlabel('Frequency in Radians/Seconds---> W');
ylabel('<X(jW)')
title('Phase Response(CTFT) in Radians')