1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
//Fluid Systems by Shiv Kumar
//Chapter 7 - Performance of water turbine
//Example 7.7
//To Determine unit power, unit speed and unit discharge and also find speed, discharge and power at condition 2
clc
clear
//Given:
//At Condition 1
P1=7200; //Power Developed, KW
N1=300; //Speed, rpm
H1=350; //Head, m
eta_o=85/100; // Overall efficiency
//At Condition 2
H2=300; //Head, m
//Data Used:
rho=1000; //Density of Water, kg/m^3
g=9.81; //Acceleration due to gravity, m/s^@
//Computations:
Q1=P1*1000/(rho*g*H1*eta_o); //m^3/s
Pu=P1/(H1^(3/2)); //Unit Power, KW
Nu=N1/sqrt(H1); //Unit Speed, rpm
Qu=Q1/sqrt(H1); //Unit Discharge, m^3/s
P2=P1*(H2/H1)^(3/2); //KW
N2=N1*(H2/H1)^(1/2); //rpm
Q2=Q1*sqrt(H2/H1); //m^3/s
//Results
printf("Unit Power, Pu= %.3f kW\n Unit Speed, Nu=%.2f rpm\n Unit Discharge, Qu=%.4f m^/s\n",Pu, Nu, Qu) //The Answer vary due to Round off Error
printf("At head of 300 m:\n\t")
printf("The Speed,N2=%.2f rpm\n\t",N2) //The Answer vary due to Round off Error
printf("The power,P2= %.2f kW\n\t",P2)
printf("The Discharge, Q2=%.3f m^3/s\n",Q2) //The Answer vary due to Round off Error
|