1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
//Fluid System By Shiv Kumar
//Chapter 6 - Kaplan and Propeller Turbines
//Example 6.4
//To Find (a)Discharge (b)Hydraulic Efficiency (c)Overall Efficiency (d)Specific Speed
clc
clear
//Given:
N=30 //Speed, rpm
Alpha_i=31; //Inlet Guide Vane Angle, Degrees
Beta_i=90; //Inlet Runner Vane Angle, Degrees
Beta_o=24; //Outlet Runner Vane Angle, Degrees
Dm=4; //Mean Diameter of Runner, m
A=31; //Area of Flow, m^2
ML=5; //Percent of Mechanical Loss
//Data Required:
rho=1000; //Density of Water, Kg/m^3
g=9.81; //Acceleration due to gravity, m/s^2
//Computations
u=%pi*Dm*N/60; //Velocity of runner, m/s
ui=u;
uo=u;
Vwi=ui;
Vfi=ui*tand(Alpha_i); //m/s
Vf=Vfi;
Vfo=Vfi;
Vrwo=Vfo/tand(Beta_o); //m/s
Vwo=Vrwo-uo;
Vo=sqrt(Vfo^2+Vwo^2); //m/s
//(a)Discharge, Q
Q=A*Vfi; //m^3/s
//(b) Hydraulic Efficiency, eta_H
H= (Vwi+Vwo) *u/g+Vo^2/(2*g); // Head, m
eta_H=(Vwi*ui+Vwo*uo)*100/(g*H); //Percent(%)
//(c)Overall Efficiency, eta_o
P=rho*Q*(Vwi+Vwo)*u*(1-ML/100); //Shaft Power, Watt(w)
eta_o=P/(rho*Q*g*H)*100; //Percent(%)
//(d)Specific Speed,Ns
Ns=N*sqrt(P/1000)/(H^(5/4)); //SI Units
//Results
printf("(a)Discharge, Q=%.2f m^3/s\n",Q) //The answer vary due to round off error
printf("(b) Hydraulic Efficiency, eta_H =%.2f Percent\n", eta_H) //The answer vary due to round off error
printf("(c) Overall Efficiency, eta_o =%.2f Percent\n", eta_o) //The answer vary due to round off error
printf("(d)Specific Speed, Ns =%.2f (SI Units)\n", Ns) //The answer vary due to round off error
|