1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
//Fluid System By Shiv Kumar
//Chapter 6 - Kaplan and Propeller Turbines
//Example 6.10
//To Determine (i)Hydraulic Efficiency of turbine (ii)Discharge through the turbine (iii)Power Developed by the Runner
clc
clear
//Given:
D=4.5; // Runner Diameter, m
N=48; // Speed, rpm
Alpha_i=145; //Guide Vane Angle at Inlet, Degrees
Beta_o=25; //Runner blade Angle at Outlet
A=30; //Flow Area, m^2
//As runner blade angle at inlet is radial
Beta_i=90 //Degrees
//Data Required:
rho=1000; //Density of Water, Kg/m^3
g=9.81; //Acceleration due to gravity, m/s^2
//Calculations
u=%pi*D*N/60; //Velocity of Runner,m/s
ui=u;
uo=u;
Vwi=ui;
Vfi=ui*tand(180-Alpha_i); //m/s
Vfo=Vfi;
Vrwo=Vfo/tand(Beta_o); //m/s
Vwo=Vrwo-uo; //The answer vary because wrong Value of uo is used to calculate Vwo in the textbook
Vo=sqrt(Vfo^2+Vwo^2); //m/s //The answer vary because wrong Value of Vwo is used to calculate Vo in the textbook
//(i)Hydraulic Efficiency, eta_H
H= (Vwi-Vwo)*u/g+Vo^2/(2*g); // Head, m //The answer vary because wrong Value of Vo and Vwo is used to calculate H in the textbook
eta_H=(Vwi*ui-Vwo*uo)*100/(g*H); //Percent(%)
//(ii) Discharge through the turbine, Q
Q=A*Vfi; //m^3/s
//(iii)Power Developed by the Runner, P
P=rho*Q*(Vwi-Vwo)*u/10^6; //MW
//Results
printf("(i)Hydraulic Efficiency, eta_H=%.2f Percent\n",eta_H) //The answer given in the textbook is wrong
printf("(ii) Discharge through the turbine, Q =%.1fm^3/s\n",Q) //The answer vary due to round off error
printf("(iii)Power Developed by the Runner, P =%.3fMW\n",P) //The answer given in the textbook is wrong
|