1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
//Fluid Systems - By Shiv Kumar
//Chapter 5- Francis Turbine
//Example 5.9
//To Find (i) Guide Blade Angle at Inlet (ii) The Wheel Vane Angle at Inlet (iii) Diameter of Wheel at inlet (iv)Width of Wheel at Inlet
clc
clear
//Given Data:-
//Data Required
rho=1000; //Density of water, Kg/m^3
g=9.81; //Acceleration due to gravity, m/s^2
eta_o=76/100; //Overall Efficiency
P=150; //Power Produced, kW
H=8; // Working Head, m
ui=0.25*sqrt(2*g*H); //Peripheral Velocity at Inlet, m/s
Vfi=0.95*sqrt(2*g*H); //Velocity of Flow at Inlet, m/s
N=150; //Speed, rpm
H_loss=20; //Percentage of Hydraulic Losses in the Turbine (of Available Energy)
//As Discharge is Radial,
alpha_o=90; //Degrees //Vfo=Vo
Vwo=0;
//Computations:-
Do=ui*60/(%pi*N); //m
Q=P*1000/(rho*g*H*eta_o); //m^3/s
bo=Q/(%pi*Do*Vfi); //m
//By Energy Balance Equation,
Vwi=(g*H-(H_loss/100)*g*H)/ui; //m/s
alpha_i=atand(Vfi/Vwi); //degrees
beta_i=atand(Vfi/(Vwi-ui)); //degrees
//Results:-
printf(" (i) Guide Blade Angle at Inlet, alpha_i=%.2f Degrees\n",alpha_i) //The Answer Vary due to Round off Error
printf(" (ii) The Wheel Vane Angle at Inlet, beta_i =%.2f Degrees\n", beta_i ) //The Answer Vary due to Round off Error
printf(" (iii) Diameter of Wheel at Inlet, Do =%.4f m\n",Do) //The Answer Vary due to Round off Error
printf(" (iv)Width of Wheel at Inlet , bo =%.4f m\n",bo)
|