1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
|
//Chapter 3, Example 3.12, page 105
clc
//Initialisation
L=13200 //L parameter in m
H=10240 //H parameter
Re=6370000 //actual redius of earth
ht=30 //height in m
hr=20 // in m
re1=8453000 // in metre
h1=30000 // in metre
h2=20000 //in metre
dt1=22.5
f=10*10**9 //frequency in Hz
c=3*10**8 //speed of light
d=30000 //distance in m
pt=30 //transmitter antenna power
gt=40 //transmitter antenna gain
gr=40 //receiver antenna gain
pi=3.14
F3=-3
H=-34
D=0.75
//Calculation
dt=sqrt(2*re1*ht)
X=3*dt*L**-1
Z1=h1*H**-1
Z2=h2*H**-1
vx=10**-3.5 //from fig 3.26
z1=10**0.95 //from fig 3.27
z2=10**0.65 //from fig 3.27
//for d=3dt
lv=20*log10(vx)
lz1=20*log10(z1)
lz2=20*log10(z2)
F=(lv+lz1+lz2)*20**-1
F1=10**(F)
F11=20*log10(F1)
X1=2*dt*L**-1
d3=3
f3=-F11
vx1=10**-2.35 //from fig 3.26
lv1=20*log10(vx1)
//for d=2dt
F4=1+D
F5=20*log10(F4)
d2=2
f2=-F5
//for d=1.1dt
F6=sqrt(1+D**2)
F7=20*log10(F6)
d11=1.1
f11=-F7
//for d=dt
d1=1
f1=0.2
//for plotting graph in terms of points
for N=0:1:5
a=plot(1,0.2,'-o')
a1=plot(1.1,-1.9,'-o')
a2=plot(2,-4.8,'-o')
a3=plot(3,-38,'-o')
end
title('Path gain F','fontsize',5);
xlabel("d/dt", "fontsize", 3);
ylabel("20log(F)(dB)", "fontsize", 3, "color", "blue");
xstring(1,2,"d/dt",0,0);
xstring(1.2,0.7,"1.1d/dt",0,0);
xstring(2,-0.7,"2d/dt",0,0);
xstring(2.86,-35,"3d/dt",0,0);
h=c*f**-1 //wavelength
Pr=pt+gt+gr+H+F3-10*log10(4*pi*d**2) //Received signal power
//Results
printf("(1) Effective receiver path gain F = %.4f",F11)
printf("\n(2) Path gain F plot is shown")
printf("\n(3) Received signal power Pr = %.1f dBm",Pr)
|