blob: 19e0023728acc7321e668154f2df8c546cb2c1ed (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
// Example 10.5
// Calculate the efficiency of the non-degenerate FWM tone at −2Δf if (a) beta2 = −4ps^2/km, (b) beta2 = 0ps^2/km.
// Page no 453
clc;
clear;
close;
//Given data
f=50*10^9; // The bandwidth
alpha= 0.046*10^-3; // The fiber loss coefficient
L=40*10^3; // The fiber length
Leff=(1-exp(-(alpha*L)))/alpha; // Effective fiber length
// (a) Calculate the efficiency of the non-degenerate FWM tone at −2Δf beta2 = −4ps^2/km
bet21=-4*10^(-12);
j=-1;
k=0;
l=1;
n=j+k-l;
bet1=bet21*10^(-12)/10^(3)*(2*%pi*f)^2*n;
//The efficiency of the non-degenerate FWM tone
neta1=(alpha^2+4*exp(-alpha*L*10^3)*(sind(bet1*(L*10^3)/2))/Leff^2)/(alpha^2+bet1^2);
//Displaying results in the command window
printf("\n The efficiency of the non-degenerate FWM tone at −2Δf (beta2 = −4ps^2/km) = %0.1f X 10^(-3) ",neta1*10^3);
// (b) Calculate the efficiency of the non-degenerate FWM tone at −2Δf beta2 = 0ps^2/km
bet22=0*10^(-12);
j=-1;
k=0;
l=1;
n=j+k-l;
bet2=bet22*10^(-12)/10^(3)*(2*%pi*f)^2*n;
//The efficiency of the non-degenerate FWM tone
neta2=(alpha^2+4*exp(-alpha*L*10^3)*(sind(bet2*(L*10^3)/2))/Leff^2)/(alpha^2+bet2^2);
//Displaying results in the command window
printf("\n\n The efficiency of the non-degenerate FWM tone at −2Δf (beta2 = 0ps^2/km) = %0.0f ",neta2);
|