blob: 7e15a0bbc5294b791867d2445d69426cd3260461 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
// Example no 4.8
// To determine a)the loss due to knife-edge diffraction b)the heigth of obstacle required to induce 6dB diffraction loss
// Page no. 133
clc;
clear;
// Given data
f=900*10^6; // Operating frequency in Hz
c=3*10^8; // Speed of ligth in m/s
hr=25; // Heigth of receiver in m
ht=50; // Heigth of transmitter in m
h=100; // Heigth of obstruction in m
d1=10*10^3; // Distance between transmitter and obstruction in m
d2=2*10^3; // Distance between receiver and obstruction in m
// a)To determine the loss due to knife-edge diffraction
lambda=c/f; // Operating wavelength in m
ht=ht-hr; // Hegth of transmitter after subtracting smallest heigth (hr)
h=h-hr; // Heigth of obstruction after subtracting smallest heigth (hr)
bet=atan((h-ht)/d1); // From geometry of environment in rad
gamm=atan(h/d2); // From geometry of environment in rad
alpha=bet+gamm; // From geometry of environment in rad
v=alpha*sqrt((2*d1*d2)/(lambda*(d1+d2))); // Fresnel diffraction parameter
// the loss due to knife-edge diffraction
Gd=-20*log10(0.225/v); // Diffraction loss for v>2.4 in dB
// Displaying the result in command window
printf('\n The loss due to knife-edge diffraction = %0.1f dB',Gd);
// b)To determine the heigth of obstacle required to induce 6dB diffraction loss
Gd=6; // Diffraction loss in dB
v=0; // Fresnel diffraction parameter from the plot of Knife-edge diffraction gain as a function of Fresnel diffraction parameter
// v=0 is possible only if alpha=0. Therefore bet=-gamm
// By considering this situation, the geometry of environment provides (h/d2)=(ht/(d1+d2))
h=(ht*d2)/(d1+d2); // the heigth of obstacle required to induce 6dB diffraction loss
// Displaying the result in command window
printf('\n The heigth of obstacle required to induce 6dB diffraction loss = %0.2f m',h);
|