blob: 96aa6f505823396af484c74d78a570778d3de324 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART I : GENERATION
// CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER GENERATION
// EXAMPLE : 7.22 :
// Page number 82
clear ; clc ; close ; // Clear the work space and console
// Given data
MD = 20.0*10**3 // Maximum demand(kW)
LF = 0.6 // Load factor
CF = 0.48 // Plant capacity factor
UF = 0.8 // Plant use factor
// Calculations
// Case(a)
avg_demand = LF*MD // Average demand(kW)
ene_daily = avg_demand*24.0 // Daily energy produced(kWh)
// Case(b)
cap_installed = avg_demand/CF // Installed capacity(kW)
cap_reserve = cap_installed-MD // Reserve capacity(kW)
// Case(c)
max_ene_C = cap_installed*24.0 // Maximum energy that could be produced daily(kWh)
// Case(d)
max_ene_D = ene_daily/UF // Maximum energy that could be produced daily as per schedule(kWh)
// Results
disp("PART I - EXAMPLE : 7.22 : SOLUTION :-")
printf("\nCase(a): Daily energy produced = %.f kWh", ene_daily)
printf("\nCase(b): Reserve capacity of plant = %.f kW", cap_reserve)
printf("\nCase(c): Maximum energy that could be produced daily when plant runs at all time = %.f kWh", max_ene_C)
printf("\nCase(d): Maximum energy that could be produced daily when plant runs fully loaded = %.f kWh", max_ene_D)
|