blob: 550c2a55ca1335fd6560ba1d6a5dd009b2ae5765 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART IV : UTILIZATION AND TRACTION
// CHAPTER 8: BRAKING
// EXAMPLE : 8.4 :
// Page number 810
clear ; clc ; close ; // Clear the work space and console
// Given data
W = 355.0 // Weight of train(tonne)
V_1 = 80.5 // Speed(km/hr)
V_2 = 48.3 // Speed(km/hr)
D = 1.525 // Distance(km)
G = 100.0/90 // Gradient(%)
I = 10.0 // Rotational inertia(%)
r = 53.0 // Tractive resistance(N/tonne)
n = 0.8 // Overall efficiency
// Calculations
beta = (V_1**2-V_2**2)/(2*D*3600) // Braking retardation(km phps)
W_e = W*(100+I)/100 // Accelerating weight of train(tonne)
F_t = 277.8*W_e*beta+98.1*W*G-W*r // Tractive effort(N)
work_done = F_t*D*1000 // Work done by this effort(N-m)
energy = work_done*n/(1000*3600) // Energy returned to line(kWh)
// Results
disp("PART IV - EXAMPLE : 8.4 : SOLUTION :-")
printf("\nEnergy returned to the line = %.1f kWh", energy)
|