blob: 33bac80b8b53ee67c1b8e86adcd3b8a6be1961da (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART IV : UTILIZATION AND TRACTION
// CHAPTER 2: HEATING AND WELDING
// EXAMPLE : 2.7 :
// Page number 732-733
clear ; clc ; close ; // Clear the work space and console
// Given data
l = 4.0 // Length of material(cm)
b = 2.0 // Breadth of material(cm)
t = 1.0 // Thickness of material(cm)
l_e = 20.0 // Length of area(cm)
b_e = 2.0 // Breadth of area(cm)
dis = 1.6 // Distance of separation of electrode(cm)
f = 20.0*10**6 // Frequency(Hz)
P = 80.0 // Power absorbed(W)
e_r1 = 5.0 // Relative permittivity
e_r2 = 1.0 // Relative permittivity of air
PF = 0.05 // Power factor
// Calculations
e_0 = 8.854*10**-12 // Absolute permittivity
A_1 = (l_e-l)*b_e*10**-4 // Area of one electrode(sq.m)
A_2 = l*b*10**-4 // Area of material under electrode(sq.m)
d = dis*10**-2 // Distance of separation of electrode(m)
d_1 = t*10**-2 // (m)
d_2 = (d-d_1) // (m)
C = e_0*((A_1*e_r2/d)+(A_2/((d_1/e_r1)+(d_2/e_r2)))) // Capacitance(F)
X_c = 1.0/(2*%pi*f*C) // Reactance(ohm)
phi = acosd(PF) // Φ(°)
R = X_c*tand(phi) // Resistance(ohm)
V = (P*R)**0.5 // Voltage applied across electrodes(V)
I_c = V/X_c // Current through the material(A)
// Results
disp("PART IV - EXAMPLE : 2.7 : SOLUTION :-")
printf("\nVoltage applied across electrodes, V = %.f V", V)
printf("\nCurrent through the material, I_c = %.1f A\n", I_c)
printf("\nNOTE: ERROR: Calculation mistake in the textbook solution")
|