blob: e315d65dc29a3a2abb3bde8d212ec7becc73b7b2 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART IV : UTILIZATION AND TRACTION
// CHAPTER 2: HEATING AND WELDING
// EXAMPLE : 2.4 :
// Page number 728
clear ; clc ; close ; // Clear the work space and console
// Given data
w_brass = 1000.0 // Weight of brass(kg)
time = 1.0 // Time(hour)
heat_sp = 0.094 // Specific heat
fusion = 40.0 // Latent heat of fusion(kcal/kg)
T_initial = 24.0 // Initial temperature(°C)
melt_point = 920.0 // Melting point of brass(°C)
n = 0.65 // Efficiency
// Calculations
heat_req = w_brass*heat_sp*(melt_point-T_initial) // Heat required to raise the temperature(kcal)
heat_mel = w_brass*fusion // Heat required for melting(kcal)
heat_total = heat_req+heat_mel // Total heat required(kcal)
energy = heat_total*1000*4.18/(10**3*3600*n) // Energy input(kWh)
power = energy/time // Power(kW)
// Results
disp("PART IV - EXAMPLE : 2.4 : SOLUTION :-")
printf("\nAmount of energy required to melt brass = %.f kWh", energy)
|