blob: 958fb26e13a70ea87d21135fdf691def064aac4e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 10: POWER SYSTEM STABILITY
// EXAMPLE : 10.3 :
// Page number 270-271
clear ; clc ; close ; // Clear the work space and console
// Given data
E_1 = 1.25 // Sending end voltage(p.u)
x_d = 1.0 // Reactance(p.u)
x_T1 = 0.2 // Reactance(p.u)
x_l1 = 1.0 // Reactance(p.u)
x_l2 = 1.0 // Reactance(p.u)
x_T2 = 0.2 // Reactance(p.u)
E_2 = 1.0 // Receiving end voltage(p.u)
x_L = 1.0 // Shunt inductor reactance(p.u)
x_C = 1.0 // Shunt capacitor reactance(p.u)
// Calculations
// Case(a)
Z_1_a = x_d+x_T1+(x_l1/2.0) // Reactance(p.u)
Z_2_a = x_T2+x_d // Reactance(p.u)
Z_3_a = x_L // Reactance(p.u)
Z_a = Z_1_a+Z_2_a+(Z_1_a*Z_2_a/Z_3_a) // Transfer reactance(p.u)
P_max_1 = E_1*E_2/Z_a // Maximum power transfer if shunt inductor is connected at bus 2(p.u)
// Case(b)
Z_1_b = x_d+x_T1+(x_l1/2.0) // Reactance(p.u)
Z_2_b = x_T2+x_d // Reactance(p.u)
Z_3_b = -x_C // Reactance(p.u)
Z_b = Z_1_b+Z_2_b+(Z_1_b*Z_2_b/Z_3_b) // Transfer reactance(p.u)
P_max_2 = E_1*E_2/Z_b // Maximum power transfer if shunt capacitor is connected at bus 2(p.u)
// Results
disp("PART II - EXAMPLE : 10.3 : SOLUTION :-")
printf("\nCase(a): Maximum power transfer if shunt inductor is connected at bus 2, P_max1 = %.3f p.u", P_max_1)
printf("\nCase(b): Maximum power transfer if shunt capacitor is connected at bus 2, P_max2 = %.2f p.u", P_max_2)
|