summaryrefslogtreecommitdiff
path: root/3472/CH17/EX17.21/Example17_21.sce
blob: a43e66d474d3d399f4f06386a133907ce6df01a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION 

// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 10: POWER SYSTEM STABILITY

// EXAMPLE : 10.21 :
// Page number 305-306
clear ; clc ; close ; // Clear the work space and console

// Given data
f = 50.0        // Frequency(Hz)
P = 4.0         // Number of poles
G = 20.0        // Rating of turbo-generator(MVA)
V = 13.2        // Voltage(kV)
H = 9.0         // Inertia constant(kW-sec/kVA)
P_s = 20.0      // Input power less rotational loss(MW)
P_e = 15.0      // Output power(MW)

// Calculations
KE = G*H                         // Kinetic energy stored(MJ)
M = G*H/(180*f)                  // Angular momentum(MJ-sec/elect.degree)
P_a = P_s-P_e                    // Accelerating power(MW)
alpha = P_a/M                    // Acceleration(elect.degree/sec^2)
alpha_deg = alpha/2.0            // Acceleration(degree/sec^2)
alpha_rpm = 60.0*alpha_deg/360   // Acceleration(rpm/sec)

// Results
disp("PART II - EXAMPLE : 10.21 : SOLUTION :-")
printf("\nCase(a): Kinetic energy stored by rotor at synchronous speed, GH = %.f MJ", KE)
printf("\nCase(b): Acceleration, α = %.f degree/sec^2", alpha_deg)
printf("\n         Acceleration, α = %.2f rpm/sec", alpha_rpm)