1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 9: LOAD FLOW STUDY USING COMPUTER TECHNIQUES
// EXAMPLE : 9.7 :
// Page number 239
clear ; clc ; close ; // Clear the work space and console
// Given data
Y_C = complex(0,0.1) // Shunt admittance(mho)
Z_L = complex(0,0.2) // Series impedance(mho)
// Calculations
Y_L = 1.0/Z_L // Series admittance(mho)
Y_11 = Y_C+Y_C+Y_L+Y_L // Admittance(mho)
Y_12 = -Y_L // Admittance(mho)
Y_13 = -Y_L // Admittance(mho)
Y_21 = Y_12 // Admittance(mho)
Y_22 = Y_L+Y_L+Y_C+Y_C // Admittance(mho)
Y_23 = -Y_L // Admittance(mho)
Y_31 = Y_13 // Admittance(mho)
Y_32 = Y_23 // Admittance(mho)
Y_33 = Y_L+Y_L+Y_C+Y_C // Admittance(mho)
Y_bus = [[Y_11, Y_12, Y_13],
[Y_21, Y_22, Y_23],
[Y_31, Y_32, Y_33]] // Bus admittance matrix
S_11 = conj(Y_bus(1,1:1))
S_12 = conj(Y_bus(1,2:2))
S_13 = conj(Y_bus(1,3:3))
S_21 = S_12
S_22 = conj(Y_bus(2,2:2))
S_23 = conj(Y_bus(2,3:3))
S_31 = S_13
S_32 = S_23
S_33 = conj(Y_bus(3,3:3))
// Results
disp("PART II - EXAMPLE : 9.7 : SOLUTION :-")
printf("\nPower flow expressions are:")
printf("\nS_1 = %.1fj|V_1|^2 %.1fjV_1V_2* %.1fjV_3*", imag(S_11),imag(S_12),imag(S_13))
printf("\nS_2 = %.1fjV_2V_1* + %.1fj|V_2|^2 %.1fjV_2V_3*", imag(S_21),imag(S_22),imag(S_23))
printf("\nS_3 = %.1fjV_3V_1* %.1fjV_3V_2* + %.1fj|V_3|^2", imag(S_31),imag(S_32),imag(S_33))
|