1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES
// EXAMPLE : 3.17 :
// Page number 147-148
clear ; clc ; close ; // Clear the work space and console
// Given data
f = 50.0 // Frequency(Hz)
L = 160.0 // Line length(km)
r = 0.15 // Resistance(ohm/km/phasemag)
l = 1.2*10**-3 // Inductance(H/km/phasemag)
c = 0.008*10**-6 // Capacitance(F/km/phasemag)
g = 0.0 // Conductance(mho/km/phasemag)
// Calculations
// Case(i) Using convergent series(Complex angles) method
z = r+%i*2*%pi*f*l // Impedance(ohm/km)
Z = z*L // Total series impedance(ohm)
y = g+%i*2*%pi*f*c // Shunt admittance(S/km)
Y = y*L // Total shunt admittance(S)
A = 1+(Y*Z/2)+((Y*Z)**2/24) // Constant
B = Z*(1+(Y*Z/6)+((Y*Z)**2/120)) // Constant(ohm)
C = Y*(1+(Y*Z/6)+((Y*Z)**2/120)) // Constant(mho)
D = A // Constant
// Case(ii) Using convergent series(Real angles) method
gamma_l = (Z*Y)**0.5 // γl
alpha_l = real(gamma_l) // αl
beta_l = imag(gamma_l) // βl
Z_c = (Z/Y)**0.5 // Surge impedance(ohm)
A_2 = cosh(gamma_l) // Constant
B_2 = Z_c*sinh(gamma_l) // Constant(ohm)
C_2 = (1/Z_c)*sinh(gamma_l) // Constant(mho)
D_2 = A_2 // Constant
// Results
disp("PART II - EXAMPLE : 3.17 : SOLUTION :-")
printf("\nCase(i): Using convergent series(Complex Angles) method")
printf("\nA = D = %.3f∠%.1f° ", abs(A),phasemag(A))
printf("\nB = %.f∠%.1f° ohm", abs(B),phasemag(B))
printf("\nC = %.4f∠%.1f° mho \n", abs(C),phasemag(C))
printf("\nCase(ii): Using convergent series(Real Angles) method")
printf("\nA = D = %.3f∠%.1f° ", abs(A_2),phasemag(A_2))
printf("\nB = %.1f∠%.1f° ohm", abs(B_2),phasemag(B_2))
printf("\nC = %.4f∠%.1f° S \n", abs(C_2),phasemag(C_2))
printf("\nNOTE: Slight change in obtained answer from that of textbook is due to more precision")
|