1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
global Z0;
Z0=50;
//define the S-parameters of the transistor
s11=0.3*exp(%i*(+30)/180*%pi);
s12=0.2*exp(%i*(-60)/180*%pi);
s21=2.5*exp(%i*(-80)/180*%pi);
s22=0.2*exp(%i*(-15)/180*%pi);
s_param = [s11 s12;s21 s22]
delta = abs(det(s_param));
k = (1 - abs(s11)^2 - abs(s22)^2 +delta^2)./(2*abs(s12*s21));
//noise parameters of the transistor
Fmin_dB=1.5
Fmin=10^(Fmin_dB/10);
Rn=4;
Gopt=0.5*exp(%i*45/180*%pi);
//compute a noise circle
Fk_dB=1.6;//desired noise performance
Fk=10^(Fk_dB/10);
Qk=abs(1+Gopt)^2*(Fk-Fmin)/(4*Rn/Z0); //noise circle parameter
dfk=Gopt/(1+Qk); //circle center location
rfk=sqrt((1-abs(Gopt)^2)*Qk+Qk^2)/(1+Qk); //circle radius
//plot a noise circle
a=[0:360]/180*%pi;
mtlb_hold on
plot(real(dfk)+rfk*cos(a),imag(dfk)+rfk*sin(a),'b','linewidth',2);
//specify the goal gain
G_goal_dB=8;
G_goal=10^(G_goal_dB/10);
//find constant operating power gain circles
go=G_goal/abs(s21)^2; //normalized gain
dgo=go*conj(s22-delta*conj(s11))/(1+go*(abs(s22)^2)); //center
rgo=sqrt(1-2*K*go*abs(s12*s21)+go^2*abs(s12*s21)^2);
rgo=rgo/abs(1+go*(abs(s22)^2)); //radius
//map a constant gain circle into the Gs plane
rgs=rgo*abs(s12*s21/(abs(1-s22*dgo)^2-rgo^2*abs(s22)^2));
dgs=((1-s22*dgo)*conj(s11-delta*dgo)-rgo^2*s22)/(abs(1-s22*dgo)^2-rgo^2*abs(s22)^2);
//plot constant gain circle in the Smith Chart
mtlb_hold on
plot(real(dgs)+rgs*cos(a),imag(dgs)+rgs*sin(a),'r','linewidth',2);
//choose a source reflection coefficient Gs
Gs=dgs+%i*rgs;
//find the corresponding GL
GL=(s11-conj(Gs))/(delta-s22*conj(Gs));
//find the actual noise figure
F=Fmin+4*Rn/Z0*abs(Gs-Gopt)^2/(1-abs(Gs)^2)/abs(1+Gopt)^2;
//% print out the actual noise figure
Actual_F_dB=10*log10(F)
//find the input and output reflection coefficients
Gin=s11+s12*s21*GL/(1-s22*GL);
Gout=s22+s12*s21*Gs/(1-s11*Gs);
//find the VSWRin and VSWRout
Gimn=abs((Gin-conj(Gs))/(1-Gin*Gs));
Gomn=abs((Gout-conj(GL))/(1-Gout*GL));
VSWRin=(1+Gimn)/(1-Gimn); //VSWRin should be unity since we used the constant operating gain approach
VSWRout=(1+Gomn)/(1-Gomn);
//specify the desired VSWRin
VSWRin=1.5;
//find parameters for constant VSWR circle
Gimn=(1-VSWRin)/(1+VSWRin)
dvimn=(1-Gimn^2)*conj(Gin)/(1-abs(Gimn*Gin)^2); //circle center
rvimn=(1-abs(Gin)^2)*abs(Gimn)/(1-abs(Gimn*Gin)^2); //circle radius
//plot VSWRin=1.5 circle in the Smith Chart
plot(real(dvimn)+rvimn*cos(a),imag(dvimn)+rvimn*sin(a),'g','linewidth',2);
//plot a graph of the output VSWR as a function of the Gs position on the constant VSWRin circle
Gs=dvimn+rvimn*exp(%i*a);
Gout=s22+s12*s21*Gs./(1-s11*Gs);
//find the reflection coefficients at the input and output matching networks
Gimn=abs((Gin-conj(Gs))./(1-Gin*Gs));
Gomn=abs((Gout-conj(GL))./(1-Gout*GL));
//and find the corresponding VSWRs
VSWRin=(1+Gimn)./(1-Gimn);
VSWRout=(1+Gomn)./(1-Gomn);
figure; //open new figure for the VSWR plot
plot(a/%pi*180,VSWRout,'r',a/%pi*180,VSWRin,'b','linewidth',2);
legend('VSWR_{out}','VSWR_{in}');
title('Input and output VSWR as a function of \Gamma_S position');
xlabel('Angle \alpha, deg.');
ylabel('Input and output VSWRs');
mtlb_axis([0 360 1.3 2.3])
//choose a new source reflection coefficient
Gs=dvimn+rvimn*exp(%i*85/180*%pi);
//find the corresponding output reflection coefficient
Gout=s22+s12*s21*Gs./(1-s11*Gs);
//compute the transducer gain in this case
GT=(1-abs(GL)^2)*abs(s21)^2.*(1-abs(Gs).^2)./abs(1-GL*Gout).^2./abs(1-Gs*s11).^2;
GT_dB=10*log10(GT)
//find the input and output matching network reflection coefficients
Gimn=abs((Gin-conj(Gs))./(1-Gin*Gs));
Gomn=abs((Gout-conj(GL))./(1-Gout*GL));
//and find the corresponding VSWRs
VSWRin=(1+Gimn)./(1-Gimn)
VSWRout=(1+Gomn)./(1-Gomn)
//also compute the obtained noise figure
F=Fmin+4*Rn/Z0*abs(Gs-Gopt)^2/(1-abs(Gs)^2)/abs(1+Gopt)^2;
F_dB=10*log10(F)
|