blob: 01833fc63968b715108c3c8ff28800562486174b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
//define problem parameters
Nd=1e16*1e6;
d=0.75e-6;
W=10e-6;
L=2e-6;
eps_r=12;
Vd=0.8;
mu_n=8500*1e-4;
lambda=0.03;
//define physical constants
q=1.60218e-19; //electron charge
eps0=8.85e-12; //permittivity of free space
eps=eps_r*eps0;
// pinch-off voltage
Vp=q*Nd*d^2/(2*eps)
//threshold voltage
Vt0=Vd-Vp
//conductivity of the channel
sigma=q*mu_n*Nd
//channel conductance
G0=q*sigma*Nd*W*d/L
//define the range for gate source voltage
Vgs_min=-2.5;
Vgs_max=-1;
Vgs=Vgs_max:-0.5:Vgs_min;
//drain source voltage
Vds=0:0.01:5;
//compute drain saturation voltage
Vds_sat=Vgs-Vt0;
//first the drain current is taken into account the channel length modulation
for n=1:length(Vgs)
if Vgs(n)>Vt0
Id_sat=G0*(Vp/3-(Vd-Vgs(n))+2/(3*sqrt(Vp))*(Vd-Vgs(n))^(3/2));
else
Id_sat=0;
end;
Id_linear=G0*(Vds-2/(3*sqrt(Vp)).*((Vds+Vd-Vgs(n)).^(3/2)-(Vd-Vgs(n))^(3/2))).*(1+lambda*Vds);
Id_saturation=Id_sat*(1+lambda*Vds);
Id=Id_linear.*(Vds<=Vds_sat(n))+Id_saturation.*(Vds>Vds_sat(n));
plot(Vds,Id);
set(gca(),"auto_clear","off");
end;
//next the channel length modulation is not taken into account
for n=1:length(Vgs)
if Vgs(n)>Vt0
Id_sat=G0*(Vp/3-(Vd-Vgs(n))+2/(3*sqrt(Vp))*(Vd-Vgs(n))^(3/2));
else
Id_sat=0;
end;
Id_linear=G0*(Vds-2/(3*sqrt(Vp)).*((Vds+Vd-Vgs(n)).^(3/2)-(Vd-Vgs(n))^(3/2)));
Id_saturation=Id_sat;
Id=Id_linear.*(Vds<=Vds_sat(n))+Id_saturation.*(Vds>Vds_sat(n));
plot(Vds, Id);
end;
//computation of drain saturation current
Vgs=0:-0.01:-4;
Vds_sat=Vgs-Vt0;
Id_sat=G0*(Vp/3-(Vd-Vgs)+2/(3*sqrt(Vp))*(Vd-Vgs).^(3/2)).*(1+lambda*Vds_sat).*(1-(Vgs<Vt0));
plot(Vds_sat, Id_sat);
mtlb_axis([0 5 0 4]);
title('Drain current vs. V_{DS} plotted for different V_{GS}');
xlabel('Drain-source voltage V_{DS}, V');
ylabel('Drain current I_{D}, A');
|