summaryrefslogtreecommitdiff
path: root/331/CH11/EX11.2/Example_11_2.sce
blob: d4baf58d940c960a81c39af1a7689052a37d0fd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
//Caption: Factor Analysis
//Centroid Method
//Example11.2
//Page439
clear;
clc;
X1 = [6,4,4,1,4,4,3,7,5,5];// Fuel Efficiency
X2 = [8,4,1,2,3,4,3,7,3,4];//Life of the two-wheeler
X3 = [9,6,6,6,5,6,0,6,1,2];//Handling convenience
X4 = [9,8,5,3,5,8,9,9,8,3];//Quality of original spare
X5 = [1,2,1,2,2,2,1,9,1,1];//Breakdown rate
X6 = [2,1,2,3,3,3,3,2,2,0];//Price
n = 6;//number of variables
m = length(X1);//number of sets of observations
F = 3;//number of factors to be identified
f = 1;//current factor number
Xcorr1 = [1,0.742,0.168,0.496,0.484,-0.430;0.742,1,0.424,0.568,0.474,-0.204;0.168,0.424,1,0.050,0.238,0.092]
Xcorr2 = [0.496,0.568,0.050,1,0.29,0.196;0.484,0.474,0.238,0.290,1,0.037;-0.430,-0.204,0.092,0.196,0.037,1];
Xcorr = [Xcorr1;Xcorr2]
Xcorr_ref = abs(Xcorr)
disp(Xcorr_ref,'Correlation Coefficient Matrix=')
for j = 1:n
    S(j)= sum(Xcorr_ref(:,j))
end
disp(S,'column totals S=')
T = sum(S);
disp(T,'Grand total of column totals T=')
Tsqrt = sqrt(T);
for j = 1:n
    L1(j)= S(j)/Tsqrt;
    if j ==n then
        L1(j)=-L1(j);
    end
end
disp(L1,'Loading values of factor1 L1=')
for i = 1:n
    for j =1:n
        P2(i,j)= L1(i)*L1(j);
        R2(i,j) = Xcorr(i,j)-P2(i,j)
        if (R2(i,j)<0) then
            R2_ref(i,j)= -R2(i,j);
        else
            R2_ref(i,j)= R2(i,j);
        end
    end
end
disp(P2,'Cross-Product matrix P2=')
disp(R2,'Residual matrix R2=')
disp(R2_ref,'Reflected residual matrix R2=')
for j = 1:n
    S1(j)= sum(R2_ref(:,j))
end
disp(S1,'column totals S1=')
T1 = sum(S1);
disp(T1,'Grand total of column totals T1=')
Tsqrt1 = sqrt(T1);
for j = 1:n
    L2(j)= S1(j)/Tsqrt1;
    if S1(j)>1 then
        L2(j)=-L2(j);
    end
end
disp(L2,'Loading values of factor2 L2=')
for i = 1:n
    for j =1:n
        P3(i,j)= L2(i)*L2(j);
        R3(i,j) = R2(i,j)-P3(i,j)
        if (R3(i,j)<0) then
            R3_ref(i,j)= -R3(i,j);
        else
            R3_ref(i,j)= R3(i,j);
        end
    end
end
disp(P3,'Cross-Product matrix P3=')
disp(R3,'Residual matrix R3=')
disp(R3_ref,'Reflected residual matrix R3=')
for j = 1:n
    S2(j)= sum(R3_ref(:,j))
end
disp(S2,'column totals S2=')
T2 = sum(S2);
disp(T2,'Grand total of column totals T2=')
Tsqrt2 = sqrt(T2);
for j = 1:n
    L3(j)= S2(j)/Tsqrt2;
    if S2(j)>0.8 then
        L3(j)=-L3(j);
    end
end
disp(L3,'Loading values of factor3 L3=')
for i = 1:n
    for j = 1:F
        h(i) = L1(i)^2+L2(i)^2+L3(i)^2;
    end
end
disp(h,'Communality h^2 =')
EigenValueL1 = sum(L1.^2);
EigenValueL2 = sum(L2.^2);
EigenValueL3 = sum(L3.^2);
EigenValueh = sum(h);
disp(EigenValueL1,'Eigen Value of L1 =')
disp(EigenValueL2,'Eigen Value of L2 =')
disp(EigenValueL3,'Eigen Value of L3 =')
disp(EigenValueh,'Eigen Value of h =')
disp([EigenValueL1/n,EigenValueL2/n,EigenValueL3/n],'Proportion of total variance=')
disp([EigenValueL1/EigenValueh,EigenValueL2/EigenValueh,EigenValueL3/EigenValueh],'Proportion of common variance=')
disp(round(EigenValueL1*100/n),'The proportion of total variance of the factor-1=')
disp(round(EigenValueL2*100/n),'The proportion of total variance of the factor-1=')
disp(round(EigenValueL3*100/n),'The proportion of total variance of the factor-1=')
disp(round(EigenValueL1*100/EigenValueh),'The proportion of common variance=')
disp(round(EigenValueL2*100/EigenValueh),'The proportion of common variance=')
disp(round(EigenValueL3*100/EigenValueh),'The proportion of common variance=')
//Result
  
// Correlation Coefficient Matrix=   
// 
//    1.       0.742    0.168    0.496    0.484    0.43   
//    0.742    1.       0.424    0.568    0.474    0.204  
//    0.168    0.424    1.       0.05     0.238    0.092  
//    0.496    0.568    0.05     1.       0.29     0.196  
//    0.484    0.474    0.238    0.29     1.       0.037  
//    0.43     0.204    0.092    0.196    0.037    1.     
// 
// column totals S=   
// 
//    3.32   
//    3.412  
//    1.972  
//    2.6    
//    2.523  
//    1.959  
// 
// Grand total of column totals T=   
// 
//    15.786  
// 
// Loading values of factor1 L1=   
// 
//    0.8356069  
//    0.8587623  
//    0.4963304  
//    0.6543910  
//    0.6350109  
//  - 0.4930584  
// 
// Cross-Product matrix P2=   
// 
//    0.6982389    0.7175877    0.4147371    0.5468136    0.5306195  - 0.4120030  
//    0.7175877    0.7374727    0.4262298    0.5619663    0.5453235  - 0.4234200  
//    0.4147371    0.4262298    0.2463438    0.3247941    0.3151752  - 0.2447199  
//    0.5468136    0.5619663    0.3247941    0.4282275    0.4155454  - 0.3226530  
//    0.5306195    0.5453235    0.3151752    0.4155454    0.4032389  - 0.3130975  
//  - 0.4120030  - 0.4234200  - 0.2447199  - 0.3226530  - 0.3130975    0.2431066  
// 
// Residual matrix R2=   
// 
//    0.3017611    0.0244123  - 0.2467371  - 0.0508136  - 0.0466195  - 0.0179970  
//    0.0244123    0.2625273  - 0.0022298    0.0060337  - 0.0713235    0.2194200  
//  - 0.2467371  - 0.0022298    0.7536562  - 0.2747941  - 0.0771752    0.3367199  
//  - 0.0508136    0.0060337  - 0.2747941    0.5717725  - 0.1255454    0.5186530  
//  - 0.0466195  - 0.0713235  - 0.0771752  - 0.1255454    0.5967611    0.3500975  
//  - 0.0179970    0.2194200    0.3367199    0.5186530    0.3500975    0.7568934  
// 
// Reflected residual matrix R2=   
// 
//    0.3017611    0.0244123    0.2467371    0.0508136    0.0466195    0.0179970  
//    0.0244123    0.2625273    0.0022298    0.0060337    0.0713235    0.2194200  
//    0.2467371    0.0022298    0.7536562    0.2747941    0.0771752    0.3367199  
//    0.0508136    0.0060337    0.2747941    0.5717725    0.1255454    0.5186530  
//    0.0466195    0.0713235    0.0771752    0.1255454    0.5967611    0.3500975  
//    0.0179970    0.2194200    0.3367199    0.5186530    0.3500975    0.7568934  
// 
// column totals S1=   
// 
//    0.6883406  
//    0.5859465  
//    1.6913123  
//    1.5476123  
//    1.2675222  
//    2.1997807  
// 
// Grand total of column totals T1=   
// 
//    7.9805146  
// 
// Loading values of factor2 L2=   
// 
//    0.2436621  
//    0.2074161  
//  - 0.5986988  
//  - 0.5478312  
//  - 0.4486835  
//  - 0.7786888  
// 
// Cross-Product matrix P3=   
// 
//    0.0593712    0.0505394  - 0.1458802  - 0.1334857  - 0.1093272  - 0.1897369  
//    0.0505394    0.0430215  - 0.1241798  - 0.1136290  - 0.0930642  - 0.1615126  
//  - 0.1458802  - 0.1241798    0.3584402    0.3279858    0.2686263    0.4662000  
//  - 0.1334857  - 0.1136290    0.3279858    0.3001190    0.2458028    0.4265900  
//  - 0.1093272  - 0.0930642    0.2686263    0.2458028    0.2013169    0.3493849  
//  - 0.1897369  - 0.1615126    0.4662000    0.4265900    0.3493849    0.6063563  
// 
// Residual matrix R3=   
// 
//    0.2423899  - 0.0261272  - 0.1008569    0.0826720    0.0627076    0.1717400  
//  - 0.0261272    0.2195058    0.1219500    0.1196627    0.0217408    0.3809326  
//  - 0.1008569    0.1219500    0.3952159  - 0.6027800  - 0.3458015  - 0.1294801  
//    0.0826720    0.1196627  - 0.6027800    0.2716535  - 0.3713482    0.0920630  
//    0.0627076    0.0217408  - 0.3458015  - 0.3713482    0.3954442    0.0007126  
//    0.1717400    0.3809326  - 0.1294801    0.0920630    0.0007126    0.1505371  
// 
// Reflected residual matrix R3=   
// 
//    0.2423899    0.0261272    0.1008569    0.0826720    0.0627076    0.1717400  
//    0.0261272    0.2195058    0.1219500    0.1196627    0.0217408    0.3809326  
//    0.1008569    0.1219500    0.3952159    0.6027800    0.3458015    0.1294801  
//    0.0826720    0.1196627    0.6027800    0.2716535    0.3713482    0.0920630  
//    0.0627076    0.0217408    0.3458015    0.3713482    0.3954442    0.0007126  
//    0.1717400    0.3809326    0.1294801    0.0920630    0.0007126    0.1505371  
// 
// column totals S2=   
// 
//    0.6864936  
//    0.8899191  
//    1.6960844  
//    1.5401794  
//    1.1977549  
//    0.9254655  
// 
// Grand total of column totals T2=   
// 
//    6.935897  
// 
// Loading values of factor3 L3=   
// 
//    0.2606665  
//  - 0.3379086  
//  - 0.6440153  
//  - 0.5848170  
//  - 0.4547960  
//  - 0.3514058  
// 
// Communality h^2 =   
// 
//    0.8255572  
//    0.8946764  
//    1.0195397  
//    1.0703575  
//    0.8113952  
//    0.9729489  
// 
// Eigen Value of L1 =   
// 
//    2.7566285  
// 
// Eigen Value of L2 =   
// 
//    1.568625  
// 
// Eigen Value of L3 =   
// 
//    1.2692212  
// 
// Eigen Value of h =   
// 
//    5.5944748  
// 
// Proportion of total variance=   
// 
//    0.4594381    0.2614375    0.2115369  
// 
// Proportion of common variance=   
// 
//    0.4927413    0.2803883    0.2268705  
// 
// The proportion of total variance of the factor-1=   
// 
//    46.  
// 
// The proportion of total variance of the factor-1=   
// 
//    26.  
// 
// The proportion of total variance of the factor-1=   
// 
//    21.  
// 
// The proportion of common variance=   
// 
//    49.  
// 
// The proportion of common variance=   
// 
//    28.  
// 
// The proportion of common variance=   
// 
//    23.