blob: b03e76e5356cda3f7b0b248a929937ac13683a0e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
// Given:-
m = 4.00 // mass of carbon monoxide in kg
T = 223.00 // temperature of carbon monoxide in kelvin
D = 0.2 // inner diameter of cylinder in meter
L = 1.00 // length of the cylinder in meter
pi=3.14
// Analysis
M = 28.00 // molar mass in kg/kmol
// Calculations
V = (pi*D**2.00/4.00)*L // volume occupied by the gas in m^3
vbar = M*(V/m) // The molar specific volume in m^3/kmol
// Part(a)
// From Table A-1 for CO
Tc = 133 // in kelvin
Pc = 35 // in bar
Tr = T/Tc // reduced temperature
Rbar = 8314 // universal gas constant in N.m/kmol.K
Z = 0.9
// Calculations
vrdash = (vbar*Pc*10**5)/(Rbar*Tc) // pseudoreduced specific volume
p = (Z*Rbar*T/vbar)*10**-5 // in bar
// Result
printf( '\n part(a)the pressure in bar is: %.2f bar',p)
// Part(b)
// The ideal gas equation of state gives
// Calculations
p = (Rbar*T/vbar)/10**5 // in bar
// Result
printf( '\n Part(b)the pressure in bar is: %.2f bar',p)
// Part(c)
// For carbon monoxide, the van der Waals constants a and b can be read directly from Table A-24
a = 1.474 // in (m^3/kmol)^2
b = 0.0395 // in m^3/kmol
// Calculations
p = (Rbar*T/(vbar-b))/10**5 - a/vbar**2
// Result
printf( '\n Part(c)the pressure in bars is: %.2f bar',p)
// Part(d)
// For carbon monoxide, the Redlich–Kwong constants can be read directly from Table A-24
a = 17.22 // in m^6*K^.5/kmol^2
b = 0.02737 // in m^3/kmol
// Calculations
p = (Rbar*T/(vbar-b))/10**5 - a/(vbar*(vbar+b)*T**.5)
// Result
printf( '\n Part(d)the pressure in bar is: %.2f bar', p)
|