blob: 1b165fb015f4961b869dcc3d99c0c4722f66f211 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
// Given:-
Tc = 273.00 // temperature of cold region in kelvin
Th = 299.00 // temperature of hot region in kelvin
mdot = 0.08 // mass flow rate in kg/s
// Analysis
// At the inlet to the compressor, the refrigerant is a saturated vapor at 0C, so from Table A-10
h1 = 247.23 // in kj/kg
s1 = 0.9190 // in kj/kg.k
// The pressure at state 2s is the saturation pressure corresponding to 26C, or
p2 = 6.853 // in bars
// The refrigerant at state 2s is a superheated vapor with
h2s = 264.7 // in kj/kg
// State 3 is saturated liquid at 26C, so
h3 = 85.75 // in kj/kg
h4 = h3 // since The expansion through the valve is a throttling process
// Part(a)
Wcdot = mdot*(h2s-h1) // The compressor work input in KW
printf( ' The compressor power, in kW, is: %.2f',Wcdot)
// Part(b)
Qindot = mdot*(h1-h4)*60/211 // refrigeration capacity in ton
printf( ' The refrigeration capacity in tons is: %.2f',Qindot)
// Part(c)
beta1 = (h1-h4)/(h2s-h1)
printf( ' The coefficient of performance is: %.2f',beta1)
// Part(d)
betamax = Tc/(Th-Tc)
printf( ' The coefficient of performance of a Carnot refrigeration cycle operating between warm and cold regions at 26 and 0C, respectively is: %.2f',betamax);
|