blob: daf3343a7bac48d5e45b1525846afe386085474b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
clear;
clc;
disp('Example 5.20');
// aim : To determine
// the mass of oxygen and heat transferred
// Given values
V1 = 300;// [L]
P1 = 3.1;// [MN/m^2]
T1 = 273+18;// [K]
P2 = 1.7;// [MN/m^2]
T2 = 273+15;// [K]
Gamma = 1.4; // heat capacity ratio
// density condition
P = .101325;// [MN/m^2]
T = 273;// [K]
V = 1;// [m^3]
m = 1.429;// [kg]
// hence
R = P*V*10^3/(m*T);// [kJ/kg*K]
// since volume is constant
V2 = V1;// [L]
// for the initial conditions in the cylinder,P1*V1=m1*R*T1
m1 = P1*V1/(R*T1);// [kg]
// after some of the gas is used
m2 = P2*V2/(R*T2);// [kg]
// The mass of oxygen remaining in cylinder is m2 kg,so
// Mass of oxygen used is
m_used = m1-m2;// [kg]
mprintf('\n The mass of oxygen used = %f kg\n',m_used);
// for non-flow process,Q=del_U+W
// volume is constant so no external work is done so,Q=del_U
cv = R/(Gamma-1);// [kJ/kg*K]
// heat transfer is
Q = m2*cv*(T1-T2);// (kJ)
mprintf('\n The amount of heat transferred through the cylinder wall is = %f kJ\n',Q);
// End
|