1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
//Example5.14:"Output noise voltage""
//Page 167
//figure 5.29
clear;
clc;
Rf=99000; // in Ohm
Ri=1000; //in ohm
Rs=100; //in ohm
Av=1+Rf/Ri;
disp(Av,"Av ordinary value");
disp(20*log10(Av),"Av dB value");
Anoise=Av; //for non inverting amplifier
Rnoise=Rs+Rf*Ri/(Rf+Ri);
disp("Ohm",Rnoise,"Rnoise");
T=300; //Given in degree cel.
K=1.38*10^-23; //Boltzmann's constant
Vind=4*10^-9; //In V/Hz
Iind=0.6*10^-12; //in A/Sqrtof Hz
eth=(4*K*T*Rnoise)^0.5; //sqared the
etot=((Vind^2)+(Iind*Rnoise)^2 +eth^2)^0.5;
disp("V/(Hz)^0.5",etot,"etotal");
funity=10*10^6; //in Hz
f2=funity/Anoise;
disp("Hz",f2,"f2");
BWnoise=f2*1.57;
disp("Hz",BWnoise,"BWnoise");
en=etot*(BWnoise)^0.5;
disp("V",en,"en");
en_out=en*Anoise;
disp("V",en_out,"en_out");
//for a nominal output signal of 1V RMS signal to noise ratio is
signal=1; //in V
Noise=en_out;
S_N=signal/Noise;
disp(S_N,"Signal to Noise ratio "); //answer in book is approxmately
disp(20*log10(S_N),"S/N in dB");
//Result
|