blob: bde5fff331bc3a8015247c2669b67a288c143db0 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
clc;
close();
clear();
//page no 556
//prob no. 17.8
PtdBW=20
GtdB=55
EIRP_dBW=PtdBW+GtdB;
mprintf('The EIRP for uplink earth station is %.0f dBW \n',EIRP_dBW)
l=91-70.2; //Difference in longitude
L=40.5 //Latitude of New York
d_km=35.786*10^3*sqrt(1+0.42*(1-cos(L*%pi/180)*cos(l*%pi/180)));
mprintf('The distance is %.0f km \n',d_km)
f=6.125 //Uplink frequency in GHz
alfa1_dB=20*log10(f)+20*log10(d_km)+92.44; //Path loss
mprintf('The path loss is %.2f dB \n',alfa1_dB)
FdB=3; //noise figure in dB
F=10^(FdB/10) //absolute noise figure (exact value)
Te=(F-1)*290; //Noise temperature
mprintf('The Noise temperature of satellite reciever is %.0f K \n',Te)
Ti=300; //input noise temperature in K
Tsys=Ti+Te
mprintf('The system temperature of satellite reciever is %.0f K \n',Tsys)
G_dB=27 //satellite reciever antwnna gain
GT=G_dB-10*log10(Tsys); //G/T ratio in dB
mprintf('The G/T ratio for satellite reciever is %.2f dB/K \n',GT)
B=36*10^6 ;// Bandwidth in Hz
L_misc=1.6 //atmospheric loss
CN=EIRP_dBW-alfa1_dB+GT+228.6-10*log10(B)-L_misc; //C/N in dB
mprintf('The carrier power to noise ratio at the satellite reciever is %.2f dB \n',CN)
// Value of F is rouded to 2 in the text
|