1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
clear;
clc;
//To find Approx Value
function[A]=approx(V,n)
A=round(V*10^n)/10^n;//V-Value n-To what place
funcprot(0)
endfunction
function[Q]=MCPH(T0,T,A,B,C,D)
t=T/T0;
Q=(A+((B/2)*T0*(t+1))+((C/3)*T0*T0*((t^2)+t+1))+(D/(t*T0*T0)))
funcprot(0);
endfunction
function[Q]=IDCPH(T0,T,dA,dB,dC,dD)
t=T/T0;
Q=(dA+((dB/2)*T0*(t+1))+((dC/3)*T0*T0*((t^2)+t+1))+(dD/(t*T0*T0)))*(T-T0)
funcprot(0);
endfunction
function[Q]=IDCPS(T0,T,dA,dB,dC,dD)
t=T/T0;
Q=((dA)*log(t))+(((dB*T0)+(((dC*T0*T0)+(dD/(t*t*T0*T0)))*(t+1)/2))*(t-1))
funcprot(0);
endfunction
//Example 13.9
//Caption : Program to Determine Composition and Temperature of Product Steam
P=1;//[bar]
T0=298.15;//[K]
R=8.314;
//SO2 + 0.5O2 --> SO3
dHo_298=-98890;//[J/mol]
dGo_298=-70866;//[J/mol]
n_O2_i=0.5*1.2;// Moles O2 Entering
n_N2_i=n_O2_i*(79/21);//Moles N2 Entering
//n_SO2=1-e
//n_O2=0.6-(0.5*e)
//n_SO3=e
//n_N2=2.257
//By Energy Balance
//(dHo_298*e)+dHo_P = dH = 0 (A)
//dHo_P=Cp*(T-298.15) Cp=E nCp (B)
//Cp_SO2=R*MCPH(T0,T,5.699,0.801E-3,0,-1.015E+5)
//Cp_O2=R*MCPH(T0,T,3.639,0.506E-3,0,-0.227E+5)
//Cp_SO3=R*MCPH(T0,T,8.06,1.056E-3,0,-2.028E+5)
//Cp_N2=R*MCPH(T0,T,3.28,0.593E-3,0,0.04E+5)
//T=(-(dHo_298*e)/Cp)+T0 (C)
//K=(e/(1-e))*((3.857-(0.5*e))/(0.6-(0.5*e)))^0.5 (D)
//ln K = ((dHo_298-dGo_298)/(R*T0))-(dHo_298/(R*T))+I1-(I2/T) (E)
//I1=IDCPS(T0,T,0.5415,0.002E-3,0,-0.8995E+5)
//I2=IDCPH(T0,T,0.5415,0.002E-3,0,-0.8995E+5)
//Iteration
A1=300;//Initial
i=-1;
while(i==-1)
I1=IDCPS(T0,A1,0.5415,0.002E-3,0,-0.8995E+5);
I2=IDCPH(T0,A1,0.5415,0.002E-3,0,-0.8995E+5);
//Applying in Eqn (E)
K = exp(((dHo_298-dGo_298)/(R*T0))-(dHo_298/(R*A1))+I1-(I2/A1));
//Applying in Eqn (D)
if(isreal(K))
x=0;
// p=poly([-0.6*(K^2) 1.7*(K^2) 3.857-(1.6*(K^2)) 0.5*((K^2)-1)],'e','c')
// (0.5*((K^2)-1)*(x^3))+((3.857-(1.6*(K^2)))*(x^2))+(1.7*(K^2)*x)+(-0.6*(K^2))
F_x=(0.5*((K^2)-1)*(x^3))+((3.857-(1.6*(K^2)))*(x^2))+(1.7*(K^2)*x)+(-0.6*(K^2));
F_a=F_x;
x=1;
F_x=(0.5*((K^2)-1)*(x^3))+((3.857-(1.6*(K^2)))*(x^2))+(1.7*(K^2)*x)+(-0.6*(K^2));
//F_x=(x^3)-(4*x)+1;
F_b=F_x;
root=-100;
A=0;
B=1;
i=1;
while(i==1)
a=A;
F_a=(0.5*((K^2)-1)*(a^3))+((3.857-(1.6*(K^2)))*(a^2))+(1.7*(K^2)*a)+(-0.6*(K^2));
//F_a=(a^3)-(4*a)+1;
b=B;
F_b=(0.5*((K^2)-1)*(b^3))+((3.857-(1.6*(K^2)))*(b^2))+(1.7*(K^2)*b)+(-0.6*(K^2));
//F_b=(b^3)-(4*b)+1;
x1=((a*F_b)-(b*F_a))/(F_b-F_a);
F_x1=(0.5*((K^2)-1)*(x1^3))+((3.857-(1.6*(K^2)))*(x1^2))+(1.7*(K^2)*x1)+(-0.6*(K^2));
//F_x1=(x1^3)-(4*x1)+1;
if((F_a*F_x1)<0) then
flag=1;
A=a;
B=x1;
else((F_x1*F_b)<0)
flag=2;
A=x1;
B=b;
end
x1_a=approx(x1,4);
b_a=approx(b,4);
a_a=approx(a,4);
if(x1_a==b_a)
root=approx(x1,5);
i=0;
break;
elseif(x1_a==a_a)
root=approx(x1,5);
i=0;
break;
end
end
e=root;
Cp_SO2=R*MCPH(T0,A1,5.699,0.801E-3,0,-1.015E+5);
Cp_O2=R*MCPH(T0,A1,3.639,0.506E-3,0,-0.227E+5);
Cp_SO3=R*MCPH(T0,A1,8.06,1.056E-3,0,-2.028E+5);
Cp_N2=R*MCPH(T0,A1,3.28,0.593E-3,0,0.04E+5);
n_SO2=1-e;
n_O2=0.6-(0.5*e);
n_SO3=e;
n_N2=2.257;
if(n_SO2<0 | n_O2<0 | n_SO3<0)
e=0;
end
Cp=(n_SO2*Cp_SO2)+(n_O2*Cp_O2)+(n_SO3*Cp_SO3)+(n_N2*Cp_N2);
//Applying in Eqn (C)
B=(-(dHo_298*e)/Cp)+T0;
m=(A1+B)/2;
dT=approx(abs(m-A1),2);
if(dT<0.1)
i=0;
T=approx(A1,1);
e=approx(e,2);
break;
end
A1=m;
i=-1;
else
i=-1;
A1=A1+1;
end
end
disp(e,'Fraction')
n_SO2=1-e
n_O2=0.6-(0.5*e)
n_SO3=e
n_N2=2.257
nt=n_SO2+n_O2+n_SO3+n_N2;
y_SO2=approx(n_SO2/nt,4);
y_O2=approx(n_O2/nt,4);
y_SO3=approx(n_SO3/nt,4);
y_N2=approx(n_N2/nt,4);
disp(T,'Final Temperature')
disp(y_SO2,'Composition of SO2')
disp(y_O2,'Composition of O2')
disp(y_SO3,'Composition of SO3')
disp(y_N2,'Composition of N2')
//End
|