summaryrefslogtreecommitdiff
path: root/2087/CH12/EX12.4/example12_4.sce
blob: f688c26487efe79d05040ac781f867ffa2ecf8fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198


//example 12.4
//design a slopeing glacis
clc;funcprot(0);
//given
q=10;                     //maximum discharge intensity on weir crest
hfl=255;                  //H.F.L before construction of weir
rb=249.5;                 //R.L of river bed
pl=254;                   //pond level
s=1;                      //heigth of crest shutter
dhw=251.5;                //anticipated downstream water level in river when water is dischrging with pond level upstream
br=0.5;                   //bed retrogression
f=0.9;                    //Laecey silt factor
Ge=1/7;                   //permissible exit gradient
flux=1;                   //permissible afflux

cl=pl-s;                   //crest level
mprintf("crest level=%f m.",cl);
K=(q/1.7)^(2/3);
tel_up=cl+K;
tel_up=round(tel_up*100)/100;
mprintf("\nelevation of u/s T.E.L=%f m.",tel_up);
R=1.35*(q^2/f)^(1/3);
R=round(R*10)/10;
mprintf("\nregime scour depth=%f m.",R);
V=q/R;                     //regime velocity
vh=V^2/(2*9.81);           //velocity head
hfl_up=tel_up-vh;
tel_down=hfl+vh;
flux=hfl_up-hfl;
flux=round(flux*100)/100;
mprintf("\nafflux=%f. which is near to permissible",flux);
hfl_down=hfl-br;             //downstream H.F.L after retrogression
tel_down=tel_down-br;        //downstream T.F.L after retrogression
Hl=tel_up-tel_down;          //loss of head in flood
Hl=round(Hl*100)/100;
mprintf("\nloss of head in at high flood=%f m.",Hl);
K=pl-cl;              //head over crest
q_=1.7*(K)^1.5;
Hl_=pl-dhw;             //loss of head
mprintf("\nloss of head=%f m.",Hl_);
Ef2=4.3;
Ef2_=1.7;              //from Blench curve
jump=tel_down-Ef2;
jump_=251.5-Ef2_;      //level at which jump will form
Ef1=Ef2+Hl;
Ef1_=Ef2_+Hl_;
D1=1.03;
D1_=0.15;                //calculated from Ef1 and Ef1_ respectively
D2=3.96;D2_=1.68;       //calculated from Ef2 and Ef2_ respectively
hj=D2-D1;
hj_=D2_-D1_;            //heigth of jump
concrete=5*hj;
concrete_=5*hj_;         //length of concrete floor
mprintf("\n\nHydraulic jump calculation:");
mprintf("\nheigth of jump for high flood condition=%f m.",hj);
mprintf("\nlength of concrete floor for high flood condition=%f m.",concrete);
mprintf("\nheigth of jump for pond level condition=%f m.",hj_);
mprintf("\nlength of concrete floor for high pond level condition=%f m.",concrete_);

cw=2;                    //crets width
us=2;                    //upstream slope
ds=3;                    //downstream slope
l=15;
mprintf("\n\n upstream slope of glacis=%i:1.",us);
mprintf("\ndownstream slope of glacis=%i:1.",ds);
mprintf("\nhorizontal length of floor beyond the toe=%i m..",l);

R=6.5;
sh_up=hfl_up-1.5*R;
sh_down=hfl_down-2*R;
sh_up=round(sh_up*100)/100;
mprintf("\nR.L of bottom of upstream sheet pile=%f m.",sh_up);
mprintf("\nR.L of downstream sheet pile=%f m.",sh_down);
mprintf("\nprovide intermediate sheet pile at d/s toe of glacis.");
Hs=pl-249.6;                       //maximum percolation head
d=249.6-sh_down;                   //depth of d/s cut-off
n=Ge*d/Hs;                          //n=1/(%pi*lambda^0.5);
//from khosla exit gradient curve
alpha=1.5;
b=alpha*d;
mprintf("\n\nlength of impervious floor=%f m.",b);
fl=(2*(253-249.5))+2+(3*(253-249.6))+15;
us=36-fl;
mprintf("\nlength of floor already provide=%f m.",fl);
mprintf("\nwhich is more than required from permissible exit gradient.\nno upstream floor is required.");
mprintf("\nprovide %f m upstream floor so that total length becomes 36 m.",us);
alpha_1=0.089; 
alpha_2=0.225;            //alpha_=1/alpha
b1=21;
alpha=4.44;
mprintf("\n\nPressure percent at points:");
point=['C1' 'D1' 'C2' 'E2' 'D2' 'D3' 'E3'];
bc=[72 82 31.5 45.5 58.5 29 44];
crt=[3.1 0 3.5 0 -3.2 0 0 -3.6];
crs=[0 0 0 0 2.3 0 0 0];
cri=[3.7 0 6.4 0 -2.4 0 -6.4];
mprintf("\nPoints       Before correction            After correction");
for i=1:7
    after(i)=bc(i)+crt(i)+crs(i)+cri(i);
    mprintf("\n%s                   %i                       %f",point(i),bc(i),after(i));
end
Hs=254-249.6;               //no flow condition
Hs_=256.13-254.5;           //high flood condition
Hs__=254-251.5;             //flow at pond level
mprintf("\n\nelevation of subsoil H.G above datum:");
mprintf("\nno flow condition:");
fie1=1*Hs;
fid1=0.82*Hs;
fic1=0.788*Hs;
fie2=0.552*Hs;
fid2=0.455*Hs;
fic2=0.414*Hs;
fie3=0.34*Hs;
fid3=0.29*Hs;
fic3=0;
fie1=round(fie1*100)/100;fid1=round(fid1*100)/100;fic1=round(fic1*100)/100;
fie2=round(fie2*100)/100;fid2=round(fid2*100)/100;fic2=round(fic2*100)/100;
fie3=round(fie3*100)/100;fid3=round(fid3*100)/100;fic3=round(fic3*100)/100;
mprintf("\nfie1=%f.;fid1=%f.;fic1=%f.\nfie2=%f.;fid2=%f.;fic2=%f.\nfie3=%f.;fid3=%f.;fic3=%f.",fie1,fid1,fic1,fie2,fid2,fic2,fie3,fid3,fic3);
mprintf("\nhigh flood condition:");
fie1=1*Hs_;
fid1=0.82*Hs_;
fic1=0.788*Hs_;
fie2=0.552*Hs_;
fid2=0.455*Hs_;
fic2=0.414*Hs_;
fie3=0.34*Hs_;
fid3=0.29*Hs_;
fic3=0;
fie1=round(fie1*100)/100;fid1=round(fid1*100)/100;fic1=round(fic1*100)/100;
fie2=round(fie2*100)/100;fid2=round(fid2*100)/100;fic2=round(fic2*100)/100;
fie3=round(fie3*100)/100;fid3=round(fid3*100)/100;fic3=round(fic3*100)/100;
mprintf("\nfie1=%f.;fid1=%f.;fic1=%f.\nfie2=%f.;fid2=%f.;fic2=%f.\nfie3=%f.;fid3=%f.;fic3=%f.",fie1,fid1,fic1,fie2,fid2,fic2,fie3,fid3,fic3);
mprintf("\nflow at pond level:");
fie1=1*Hs__;
fid1=0.82*Hs__;
fic1=0.788*Hs__;
fie2=0.552*Hs__;
fid2=0.455*Hs__;
fic2=0.414*Hs__;
fie3=0.34*Hs__;
fid3=0.29*Hs__;
fic3=0;
fie1=round(fie1*100)/100;fid1=round(fid1*100)/100;fic1=round(fic1*100)/100;
fie2=round(fie2*100)/100;fid2=round(fid2*100)/100;fic2=round(fic2*100)/100;
fie3=round(fie3*100)/100;fid3=round(fid3*100)/100;fic3=round(fic3*100)/100;
mprintf("\nfie1=%f.;fid1=%f.;fic1=%f.\nfie2=%f.;fid2=%f.;fic2=%f.\nfie3=%f.;fid3=%f.;fic3=%f.",fie1,fid1,fic1,fie2,fid2,fic2,fie3,fid3,fic3);

mprintf("\n\nPrejump profile:");
mprintf("\nhigh flood condition:");
dist=[3 6 8.4];                 //distance
glacis=[252 251 250.32];        //R.L of glacis
D1=[1.3 1.15 1.03];
mprintf("\nEf1              D1");
for i=1:3
    Ef1(i)=256.25-glacis(i);
    mprintf("\n%f         %f",Ef1(i),D1(i));
end
mprintf("\npond level flow:");
dist=[3 6 9 9.6];             //distance
glacis=[252 251 250 249.9];       //R.Lof glacis
D1=[0.31 0.23 0.16 0.15];
mprintf("\nEf1              D1");
for i=1:4
    Ef1(i)=254-glacis(i);
    mprintf("\n%f         %f",Ef1(i),D1(i));
end


rho=2.24;
Uf=4;                           //unbalanced head for high flood condtion
Us=2.56;                        //unbalanced static head
Hf=2*Uf/3;
t=Hf/(rho-1);
t=round(t*10)/10;
mprintf("\n\nfloor thickness at the point of formation of hydraulic jump=%f m.",t);
Uf=2.9;                           //unbalanced head for high flood condtion
Us=2.2;                        //unbalanced static head
Hf=2*Uf/3;
t=Us/(rho-1);
t=round(t*10)/10;
mprintf("\nfloor thickness at the point of formation of hydraulic jump at the pond level condition=%f m.",t);
P=1.5;                        //pressure head at d/s end of floor
t=P/(rho-1);
t=round(t*10)/10;
mprintf("\n\nfloor thickness at downstream side of sloping glacis=%f m.",t);
D=rb-sh_up;                 //depth of u/s scour hole above bed level
a=1.5*D;
a=round(a*10)/10;
mprintf("\n\nminimum length of upstream launching apron=%f m.",a);
mprintf("\nprovide 1.5 m thick apron for length of 5 m.");
D=249.6-241.5;
a=1.5*D;
mprintf("\n\nminimum length of downstream launching apron=%f m.",a);
mprintf("\nprovide 1.5 m thick apron for length of 12 m.");