blob: f42021a1fdd0cc3cf3521b5df38c06ee7fc5c01b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
//example 12.12
//calculate
//number of gates required for the barrage
//head regulator if each gate has 10 m clear span(neglect end contractions and approach velocity)
//length and R.L of basin floor if silting basin is provided downstream of barrage
clc;funcprot(0);
//given
Lmax=212; //maximum reservior level
Lp=211; //pond level
hfl=210; //downstream high flood level in the river
Qmax=3500; //maximum design flood discharge
Lcrest=207; //crest level of the barrage
Lcrest_r=208; //crest level of head regulator
Cd=2.1; //coefficient of discharge for barrage
Cd_r=1.5; //coefficient of discharge for head regulator
rbl=205; //river bed level
Q=500; //design discharge of main canal
//design of water way for barrage during flood
H=Lmax-Lcrest;
L=Qmax/(Cd*H^1.5);
//which gives L=149.07.
//provide 15 bays of 10m clear span
mprintf("nunmber of gates for the barrage=15.");
//design of waterway for canal head regulator
H=Lp-Lcrest_r;
L1=Q/(Cd_r*H^1.5);
//which gives L=64.2
//hence provide 7 bays of 10 m each
mprintf("\n\nnunmber of gates for the head regulator=7.");
//design of stilling basin
Hl=Lmax-hfl;
q=Qmax/L;
yc=(q^2/9.81)^(1/3);
Z=Hl/yc;
//since Z<1
Y=1+0.93556*Z^0.368;
y2=Y*yc;
Lc=5*y2;
Lc=round(Lc*10)/10;
mprintf("\n\nLength of cistern=%f m.",Lc);
Ef2=yc*(Y+1/(2*Y^2));
j=hfl-Ef2;
j=round(j*10)/10;
mprintf("\nR.L of cistern=%f m.",j);
|