blob: 8f7ebfb427f2b75f5d424c215f7320209d8adc23 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
clc,clear
printf('Example 4.10\n\n')
Slots=180
Pole=12
Ns=600 //Synchronous speen in rpm
f=Pole*Ns/120 //frequency
phi=0.05 //flux per pole in weber
//Part(i)
//Average EMF in a conductor=2*f*phi
rms_value_1=1.11*2*f*phi //rms value of emf in a conductor
printf('(i)r.m.s value of e.m.f in a conductor is %.2f V ',rms_value_1)
//part(ii)
//Average EMF in a turn=4*f*phi
rms_value_2=1.11*4*f*phi//r.m.s value of e.m.f in a turn
printf('\n(ii)r.m.s value of e.m.f in a turn is %.2f V ',rms_value_2)
//part(iii)
conductors_per_coilside=10/2
rms_value_3=rms_value_2*conductors_per_coilside //r.m.s value of e.m.f in a coil
printf('\n(iii)r.m.s value of e.m.f in a coil is %.1f V ',rms_value_3)
//part(iv)
conductors_per_slot=10
Z=conductors_per_slot * Slots //total number of conductors
Z_ph=Z/3 //conductors per phase
T_ph=Z_ph/2 //turns per phase
n=Slots/Pole //slots per pole
m=n/3 //slots per pole per phase
beeta=180/n //slot angle
K_d=sind(m*beeta/2) /(m*sind(beeta/2)),K_c=1 //distribution & coil-span factor
E_ph=rms_value_2*T_ph*K_d*K_c //induced emf
printf('\n(iv)per phase induced e.m.f is %.1f V ',E_ph)
|