blob: 237ea6b806ead9f6cbc9b199bceef55c7ef5bcdb (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
// Example 6.22.1 page 6.68
clc;
clear;
f1=10d6; //frequency
f2=100d6
t=4d-9;
Pdc=280d-6; //optincal output power
w1=2*%pi*f1; //computing omega
Pout1=Pdc*10^6/(sqrt(1+(w1*t)^2)); //computing output power
w2=2*%pi*f2; //computing omega
Pout2=Pdc*10^6/(sqrt(1+(w2*t)^2)); //computing output power
printf("Ouput power at 10 MHz is %.2f microwatt.\nOuput power at 100 MHz is %.2f microwatt.\nConclusion when device is drive at higher frequency the optical power reduces.\nNOTE - calculation error. In the book square term in the denominater is not taken.",Pout1,Pout2);
BWopt = sqrt(3)/(2*%pi*t);
BWelec = BWopt/sqrt(2);
BWopt=BWopt*10^-6;
BWelec=BWelec*10^-6;
printf("\n3 dB optical power is %.2f MHz.\n3 dB electrical power is %.2f MHz.",BWopt,BWelec);
//calculation error. In the book square term in the denominater is not taken.
//answers in the book -
//Ouput power at 10 MHz is 228.7 microwatt.(incorrect)
//Ouput power at 100 MHz is 175 microwatt.(incorrect)
//3 dB optical power is 68.8 MHz, deviation of 0.12
//3 dB electrical power is 48.79 MHz, deviation of 0.06
|