blob: 3bed8ce66a81bd9b1dbba28a946c5e06034f8a5b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
//Example 14
clc;
clear
disp("CHAPTER 10");
disp("EXAMPLE 14");
//VARIABLE INITIALIZATION
p=10*1000; //in Watts
I_nl=8; //no load line current in Amperes
p_ni=660; //input power at no load in Watts
I_fl=18; //full load current in Amperes
p_fi=11.20*1000; //input power at full load in Watts
r=1.2; //stator resistance per phase in Ohms
loss=420; //friction and winding loss in Watts
//SOLUTION
//solution (a)
I1=I_nl/sqrt(3); //phase current=(line current)/sqrt(3) for delta connection
i_sq_r1=(I1^2)*r*3; //stator ((I^2)*R) loss at no load; since resistance is given in per phase, 3 needs to be multiplied for 3-phase
s_loss=(p_ni-loss)-(i_sq_r1);
disp(sprintf("(a) The stator core loss is %f W",s_loss));
//solution (b)
I2=I_fl/sqrt(3);
i_sq_r2=(I2^2)*r*3;
p_g=p_fi-s_loss-i_sq_r2; //air-gap power at full load
r_loss=p_g-p;
disp(sprintf("(b) The total rotor loss at full load is %f W",r_loss));
//solution (c)
o_loss=r_loss-loss;
disp(sprintf("(c) The total rotor ohmic loss at full load is %f W",o_loss));
//solution (d)
s_fl=o_loss/p_g; //full load slip
N_s=1500;
N_r=N_s*(1-s_fl);
disp(sprintf("(d) The full load speed is %f rpm",N_r));
//solution (e)
w=(2*%pi*N_s)/60;
T_e=p_g/w;
disp(sprintf("(e) The internal torque is %f N-m",T_e));
T_sh=p/(w*(1-s_fl));
disp(sprintf(" The shaft torque is %f N-m",T_sh));
eff=p/p_fi;
disp(sprintf(" The motor efficiency is %f %%",eff*100));
//The answers may be slightly different due to precision of floating point numbers
//END
|