1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
printf("\t example 13.6a \n");
printf("\t approximate values are mentioned in the book \n");
ds=[0 10 20 30 40 50 60 70 80 90 100];
tmp=[90 145 180 208 234 260 286 312 338 367 400];
clf();
subplot(3,2,1);
plot2d(ds,tmp,style=2,rect=[0,80,100,400]);
xtitle("Plot of ASTM curve",boxed=1);
xlabel("Per cent distilled off");
ylabel("Temperature °F");
//From the plotted ASTM curve and reference line
s = (312-145)/60; // (70% - 10%)/60%
printf("\tSlope of ASTm = %.2f °F\n",s);
ap = (180+260+338)/3; // (20% +50% +80%)/3
printf("\tAverage 50prcnt point = %.1f °F\n",ap);
fc = 38; //°F, from Fig.13.8
printf("\t50prcnt point ASTM = 50prcnt point flash curve = %.0f °F\n",fc);
fc1 = ap - fc; //°F, fixing first point on EFC
printf("\t50prcnt on EFC = %.0f °F\n",fc1);
s1 = 1.65; // (°F/%) from fig 13.10, upper curve
ten = 221 - 40*s1; //
printf("\t10prcnt on EFC = 50prcnt - 40prcnt = %.0f °F\n",ten);
sty = 221 + 20*s1; //
printf("\t70prcnt on EFC = 50prcnt + 20prcnt %.0f °F\n",sty);
//Draw this line as a reference through the 50% point. Calculate the flash curve for different percentages off
//0% off
printf("\n\t0 prcnt off:\n");
dela = 90 - 117; // Step (8)
printf("\t\tDelT ASTM = %.0f °F\n",dela);
delE = dela * 0.50; // Step (9)
printf("\t\tDelT EFC = %.1f °F\n",delE);
FE = 139 - delE; // Step (10)
printf("\t\t°F EFC = %.1f\n",FE);
//end
ov=13300; //lb/hr
ng=90;//lb/hr
mng=50;// mol. wt
st=370;//lb/hr
avG=50;//°F API
//For 80%
ouc=ov*0.80;//lb/hr
printf("\toil uncondensed = %.0f lb/hr\n",ouc);
avB=269;//°F,from Fig. 13.13
printf("\tAverage boiling point from the EFC at 1 atm = %.0f°F\n",avB);
avB1=avB+17;//°F,from Fig. 13.13
printf("\tAverage boiling point from the EFC at 19.7 psia = %.0f°F\n",avB1);
mwt=113;//mol. wt
mtoc=ouc/mwt;
printf("\tThe moles of oil still to be condensed = %.1f\n",mtoc);
mg1=ng/mng;
ms1=st/18;
tm=mg1+ms1+mtoc;
printf("\t\tMols gas = %.2f\n\t\tMols steam = %.1f\n",mg1,ms1);
printf("\t\t\t -----\n\t\tMols total = %.1f\n",tm);
tp=19.7;//psia
poil=(mtoc/tm)*tp;//psia
printf("\tPartial pressure of oil = %.1f psia\n",poil);
pgas=(mg1/tm)*tp;//psia
printf("\tPartial pressure of NC gas = %.3f psia\n",pgas);
tm(1)=95;//°F
tm(2)=127;//°F
tm(3)=163;//°F
tm(4)=205;//°F
tm(5)=240;//°F
pp(1)=6.73;
pp(2)=9.40;
pp(3)=12.25;
pp(4)=14.64;
pp(5)=15.65;
psat(1)=0.815;//From steam table
psat(2)=2.050;//From steam table
psat(3)=5.09;//From steam table
psat(4)=12.77;//From steam table
psat(5)=24.97;//From steam table
printf("\n\t\tCALCULATION OF DEW POINT OF THE STEAM\n");
printf("\tT,°F\t[pt - (poil+pNC)] = psteam\tpsat(steam tables)\n");
i=1;
while(i<6)
ps=tp-pp(i);
printf("\t"+string(tm(i))+"\t%.1f\t %.2f\t\t%.2f\t%.3f\n",tp,pp(i),ps,psat(i));
i=i+1;
end
subplot(3,2,2);
plot2d(psat,tm,style=3,rect=[0,25,90,250]);
xtitle("Computed pressure of steam",boxed=1);
xlabel("Pressure of steam, psi");
ylabel("Temperature °F");
ds=6.417;//psia,at 173°F,
printf("\tAt 173°F, the dew point of steam, psat = %.3f psia\n",ds);
pd1=tp-ds;//psia
printf("\tpoil + pNC = %.2f psia\n",pd1);
x=((tp*ms1)/ds)-(ms1+mg1);// mols oil
printf("\tOil = %.2f mols oil\n",x);
mw=85;//From fig. 13.14
printf("\tThe molecular weight of the vapors is %.0f\n",mw);
lv=x*mw;//lb
printf("\tLb/hr vapor = %.0f\n",lv);
prc=((ov-lv)*100)/ov;//%
printf("\tpercent Condensed = %.0f\n",prc);
printf("\n\t\t\tOIL CONDENSING CURVE\n");
printf("\tprcnt\tCondensables\t\tAv BP on EFC\t\t50° API\t\tMol oil\t\tMol NC gas\tMol steam\tMol total\tTotal pressure\tPartial pressure\tPartial pressure\tCond temp,°F\n\t\tlb.hr\t\t14.7 psia °F\t19.7 psia,°F\tmol.wt\t\t\t\t\t\t\t\t\t\tpsia\t\toil,psia\t\tNC gas, psia\n");
mo(1)=107.5;
mo(2)=94.3;
mo(3)=77.7;
mo(4)=57.4;
mo(5)=31.8;
mo(6)=17.1;
mo(7)=8.9;
i=1;
while(i<8)
mt(i)=mo(i)+mg1+ms1;
ppo(i)=(mo(i)/mt(i))*tp;
ppg(i)=(mg1/mt(i))*tp;
i=i+1;
end
printf("\t---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n");
printf("\t100\t13330\t\t300\t\t317\t\t124\t\t%.1f\t\t1.8\t\t20.6\t\t%.1f\t\t19.7\t\t%.1f\t\t\t%.3f\t\t\t305\n",mo(1),mt(1),ppo(1),ppg(1));
printf("\t80\t10664\t\t269\t\t286\t\t113\t\t%.1f\t\t1.8\t\t20.6\t\t%.1f\t\t19.7\t\t%.1f\t\t\t%.3f\t\t\t277\n",mo(2),mt(2),ppo(2),ppg(2));
printf("\t60\t7998\t\t239\t\t256\t\t103\t\t%.1f\t\t1.8\t\t20.6\t\t%.1f\t\t19.7\t\t%.1f\t\t\t%.3f\t\t\t240\n",mo(3),mt(3),ppo(3),ppg(3));
printf("\t40\t5332\t\t207\t\t224\t\t93\t\t%.1f\t\t1.8\t\t20.6\t\t%.1f\t\t19.7\t\t%.1f\t\t\t%.3f\t\t\t205\n",mo(4),mt(4),ppo(4),ppg(4));
printf("\t20\t2666\t\t178\t\t195\t\t84\t\t%.1f\t\t1.8\t\t20.6\t\t%.1f\t\t19.7\t\t%.1f\t\t\t%.3f\t\t\t163\n",mo(5),mt(5),ppo(5),ppg(5));
printf("\t10\t1333\t\t155\t\t172\t\t78\t\t%.1f\t\t1.8\t\t20.6\t\t%.1f\t\t19.7\t\t%.1f\t\t\t%.3f\t\t\t127\n",mo(6),mt(6),ppo(6),ppg(6));
printf("\t5\t667\t\t141\t\t158\t\t75\t\t%.1f\t\t1.8\t\t20.6\t\t%.1f\t\t19.7\t\t%.1f\t\t\t%.3f\t\t\t95\n",mo(7),mt(7),ppo(7),ppg(7));
//Trail 1:
m=78;//50° API mol. wt. for condesables 1333
vap=(ov*0.10)/78;//Mol/hr
printf("\n\t\t\t\tMol/hr\n\tOil vapor\t\t%.1f\n\tNC gas\t\t\t%.1f\n\tSteam\t\t\tX\n\tTotal\t\t\t18.9+X\n",vap,mg1);
vap1=vap+mg1;//Mol/hr
psteam=5.09;//psia, For 163°F
x1=(psteam*vap1)/(tp-psteam);//mols steam
printf("\tX = %.2f mols steam\n",x1);
tv=vap1+x1;
printf("\n\t\t\tMol/hr\tmf\tmf*pt = p-partial\n");
mf1=vap/(tv);
ppar1=mf1*tp;
printf("\tOil vapor\t%.1f\t%.3f\t%.2f\n",vap,mf1,ppar1);
mf2=mg1/tv;
ppar2=mf2*tp;
printf("\tNC gas\t\t%.1f\t%.3f\t%.2f\n",mg1,mf2,ppar2);
mf3=x1/tv;
ppar3=mf3*tp;
printf("\tSteam\t\t%.2f\t%.3f\t%.2f\n",x1,mf3,ppar3);
tot1=vap+mg1+x1;
tot2=mf1+mf2+mf3;
tot3=ppar1+ppar2+ppar3;
printf("\tTotal\t\t%.2f\t%.3f\t%.2f\n",tot1,tot2,tot3);
//Error was found. So trail 2 is done in a similar way
printf("\n\tSimilarly,\n\tT,°F\tOil cond, prcnt\tOil cond, lb\tSteam cond,lb\n");
printf("\t173\t74\t\t9863\t\t0\n\t163\t85\t\t11350\t\t204\n\t127\t97.5\t\t13000\t\t357\n\t95\t100\t\t13330\t\t370\n");
//Condensing curve
printf("\n\t\t\tOil\t\t\t\tSteam\n\t-----------------------------------------------------------------\n\tTc,°F\tHv,vapor\tHl,liquid\tHg or Hv,\tHl,liquid\n\t\t\t\t\t\tgas or vapor\n");
printf("\t-----------------------------------------------------------------\n")
printf("\t305\t368\t\t242\t\t1197.0\t\tSuperheated\n\t277\t359\t\t225\t\t1184.1\t\tSuperheated\n\t240\t337\t\t204\t\t1167.0\t\tSuperheated\n\t205\t322\t\t185\t\t1150.6\t\tSuperheated\n\t173\t310\t\t168\t\t1135.4\t\t140.9\n");//From fig.11 in Appendix and steam tables
//Heat load
//305°F:
hvv=368;
hvg=1197.0;
olv=ov*hvv;
stm=st*hvg;
ncg=ng*(0.46*273);
thh=olv+stm+ncg;
printf("\n\t\t\t\tH\t\tq\n");
printf("\tOil vapor\t\t%.2e\n\tSteam\t\t\t%.2e\n\tNC gas\t\t\t%.2e\n\t\t\t\t--------\n\t\t\t\t%.4e\t0\n",olv,stm,ncg,thh);
//Similarily at other temperatures
ttp(1)=305;//°F
ttp(2)=277;//°F
ttp(3)=240//°F
ttp(4)=205;//°F
ttp(5)=173;//°F, Dew point of steam
ttp(6)=163;//°F
ttp(7)=127;//°F
ttp(8)=95;//°F
hld(1)=0;//million Btu
hld(2)=0.55;//milllion Btu
hld(3)=1.2;//million Btu
hld(4)=1.75;//million Btu
hld(5)=2.3;//million Btu
hld(6)=2.73;//million Btu
hld(7)=3.3;//million Btu
hld(8)=3.66;//million Btu
subplot(2,2,3);
plot2d(hld,ttp,style=6,rect=[0,60,3.8,320]);
xtitle("Condensation of mixed hydrocarbons with gas and steam",boxed=1);
xlabel("Heat load, million Btu");
ylabel("Temperature °F");
//summary
dp=3042800;//Btu/hr
ttt=3638400;//Btu/hr
i2s=thh-dp;//Btu/hr
printf("\tInlet to steam dew point = %.4eBtu/hr\n",i2s);
so=dp-1735900;//Btu/hr
printf("\tSteam dew point to outlet = %.4e Btu/hr\n",so);
totl=i2s+so;//Btu/hr
printf("\tTotal\t\t\t= %.4e Btu/hr\n",totl);
twa=ttt/(120-85);
printf("\tTotal water = %.2e lb/hr\n",twa);
wt=85+((1306900/ttt)*35);//°F
printf("\tWater temperature at dew point of steam = %.0f°F\n",wt);
//Weighted true temperature difference, delT:
//Inlet to dew point of steam:
delq=2331500;
delt1=122.2;
UA1=delq/delt1;
printf("\tUA = %.0f\n",UA1);
printf("\n\tDew point of steam to oulet\n");
printf("\tq\tdelq\tTc\ttw\tdelTav\t(delq/delTav) = UA\n");
printf("\t----------------------------------------------------------\n");
q(1)=2331500;
q(2)=2500000;
q(3)=2750000;
q(4)=3000000;
q(5)=3250000;
q(6)=3500000;
q(7)=3638000;
i=1;
while(i<7)
dq(i)=q(i+1)-q(i);
i=i+1;
end
dpt(1)=173;
dpt(2)=169;
dpt(3)=161;
dpt(4)=149;
dpt(5)=134;
dpt(6)=112;
dpt(7)=95;
dtw(1)=97.5;
dtw(2)=96;
dtw(3)=93;
dtw(4)=91;
dtw(5)=89;
dtw(6)=86;
dtw(7)=85;
i=1;
tua=0;
while(i<7)
dpdelt(i)=((dpt(i+1)-dtw(i+1))+(dpt(i)-dtw(i)))/2;
UA(i)=dq(i)/dpdelt(i);
tua=tua+UA(i);
i=i+1;
end
printf("\t2331500\t......\t173\t173\t97.5\n");
i=1;
while(i<7)
printf("\t"+string(q(i+1))+"\t"+string(dq(i))+"\t"+string(dpt(i+1))+"\t"+string(dtw(i+1))+"\t"+string(dpdelt(i))+"\t%.0f\n",UA(i));//from Fig. 13.16
i=i+1;
end
printf("\t\t\t\t\t\t%.0f\tUA = sigma{delq/delt}\n",tua);
wdt=1306900/tua;//°F
printf("\tWeighted delt = %.1f°F\n",wdt);
owdt=ttt/(tua+UA1);//°F
printf("\tOverall weighted temperature difference = %.1f °F\n",owdt);
printf("\tThe uncorrected LMTD is 60.1°F\n");
//end
|