1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
printf("\t example 13.3 \n");
printf("\t approximate values are mentioned in the book \n");
printf("\t for condensing range \n");
V(1)=170.5; // volume of C3,Mol/hr
V(2)=284; // volume of C4,Mol/hr
V(3)=56.8; // volume of C6,Mol/hr
V(4)=341.1; // volume of C7,Mol/hr
V(5)=284; // volume of C8,Mol/hr
Tw=283; // dew point assumption
Tb=120; // bubble point assumption
K(1)=13.75 // at 283F
K(2)=6.18 // at 283F
K(3)=1.60 // at 283F
K(4)=0.825 // at 283F
K(5)=0.452 // at 283F
i=1;
while(i<6)
Z(i)=(V(i)/K(i));
i=i+1;
end
Vt=V(1)+V(2)+V(3)+V(4)+V(5);
Zt=Z(1)+Z(2)+Z(3)+Z(4)+Z(5);
L(1)=170.5; // volume of C3,Mol/hr
L(2)=284; // volume of C4,Mol/hr
L(3)=56.8; // volume of C6,Mol/hr
L(4)=341.1; // volume of C7,Mol/hr
L(5)=284; // volume of C8,Mol/hr
Kl(1)=4.1 // at 283F
Kl(2)=1.39 // at 283F
Kl(3)=0.17 // at 283F
Kl(4)=0.06 // at 283F
Kl(5)=0.023 // at 283F
i=1;
while(i<6)
Zl(i)=(L(i)*Kl(i));
printf(" \n V(i) K(i) Z(i) L(i) Kl(i) Zl(i) \n "+string(V(i))+" "+string(K(i))+" "+string(Z(i))+" "+string(L(i))+" "+string(Kl(i))+" "+string(Zl(i))+" \n");
i=i+1;
end
Lt=L(1)+L(2)+L(3)+L(4)+L(5);
Zlt=Zl(1)+Zl(2)+Zl(3)+Zl(4)+Zl(5);
printf("\t total volume in vapour phase : %.1f \n",Vt);
printf("\t total Zt in vapour phase : %.1f \n",Zt);
printf("\t total volume in liquid phase : %.1f \n",Lt);
printf("\t total Zlt in liquid phase : %.1f \n",Zlt);
// Range: 283 to 270°F
// Trial: Assume V /L = 4.00.
R=4; // R=(V/L), assumption
K(1)=12.75 // at 270F
K(2)=5.61 // at 270F
K(3)=1.40 // at 270F
K(4)=0.705 // at 270F
K(5)=0.375 // at 270F
i=1;
Y(i)=V(i);
while(i<6)
P(i)=(K(i)*R);
L1(i)=(V(i)/(1+P(i))); // V(i)=Y(i)
printf(" \n Y(i) K(i) P(i) L1(i) \n "+string(V(i))+" "+string(K(i))+" "+string(P(i))+" "+string(L1(i))+" \n");
i=i+1;
end
L1t=L1(1)+L1(2)+L1(3)+L1(4)+L1(5);
V1t=(Vt-L1t);
R1=(V1t/L1t);
printf("\t total liquid at 270F : %.0f \n",L1t);
printf("\t total vapour at 270F : %.0f \n",V1t);
printf("\t R1 is : %.0f \n",R1);
// If the assumed and calculated values of V /L had not checked, a new value would have been assumed.
printf("\t for condensing curve \n");
R270=4; // V/L at 270, from table 13.2
R270=1.567; // V/L at 250, from table 13.2
R270=0.916; // V/L at 230, from table 13.2
R270=0.520; // V/L at 200, from table 13.2
R270=0.226; // V/L at 160, from table 13.2
H270=30835500; // 4th table in solution ,enthalpies calculated from fig 10
printf("\t heat load at 270F is : %.0f Btu/hr \n",H270);
H250=27042400; // 5th table in solution ,enthalpies calculated from fig 10
printf("\t heat load at 250F is : %.0f Btu/hr \n",H250);
Q=H270-H250;
printf("\t heat load for interval 270-250F : %.0f Btu/hr \n",Q);
qt=21203000; // 6th table in solution, calculated from fig 10
printf("\t heat load for entire range is : %.0f Btu/hr \n",qt);
M=210410; // M=sum(U*A), 6th table in solution, calculated from fig 10
w=(qt/(120-80));
printf("\t water flow rate : %.1e lb/hr \n",w);
W=95450; // flow rate of feed,lb/hr
delt=(qt/M);
printf("\t weighted delt is : %.1f F \n",delt);
q1=[0 3.4765 7.2696 10.109 13.468 17.399 21.203];
T1=[283 270 250 230 200 160 120];
plot2d(q1,T1,style=3,rect=[0,0,25,300]);
q2=[0 21.203];
T2=[283 120];
plot2d(q2,T2,style=5,rect=[0,0,25,300]);
xtitle("condensing curve","heat load,Btu/hr","temperature,F");
legend("green-differential vapour","red-vapour");
printf("\t calculation of the exchanger \n");
T1=283; // inlet hot fluid,F
T2=120; // outlet hot fluid,F
t1=80; // inlet cold fluid,F
t2=120; // outlet cold fluid,F
L=16;
Nt=774;
n=4;
row=62.5;
Qs=21203000; // Btu/hr
Qw=(w*1*(120-80));
printf("\t heat absorbed by water : %.4e Btu/hr \n",Qw);
Mavg=84; // This corresponds very closely to hexane (mol. Wt. = 86.2) whose properties will be used throughout.
Qc=W*(0.6/2)*(283-120);
printf("\t condensate sensible heat load: %.2e Btu/hr \n",Qc);
S=(Qc*(100/Qs));
printf("\t submergence : %.0f \n",S);
Tc=((T1+T2)/2); // caloric temperature of hot fluid,F
printf("\t caloric temperature of hot fluid is : %.0f F \n",Tc);
tc=((t1+t2)/2); // caloric temperature of cold fluid,F
printf("\t caloric temperature of cold fluid is : %.0f F \n",tc);
printf("\t hot fluid:shellside,vapour \n");
Nts=(774*(1-.22)); // as submergence is 22%
printf("\t unmerged tubes : %.0f \n",Nts);
Gs=(W/(L*(Nts^(2/3)))); // eq 12.43
printf("\t Gs is : %.1f \n",Gs);
Ho=200; // assumption
printf("\t cold fluid:inner tube side,water \n");
at1=0.302; // flow area, in^2
at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48
printf("\t flow area is : %.3f ft^2 \n",at);
Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2)
printf("\t mass velocity is : %.1e lb/(hr)*(ft^2) \n",Gt);
V=(Gt/(3600*row));
printf("\t V is : %.2f fps \n",V);
hi=1355; // fig 25
ID=0.62;
OD=0.75;
hio=((hi)*(ID/OD)); //Hio=(hio/phyp), using eq.6.5
printf("\t Correct hio to the surface at the OD is : %.2e Btu/(hr)*(ft^2)*(F) \n",hio);
tw=(tc)+(((Ho)/(hio+Ho))*(Tc-tc)); // from eq.5.31
printf("\t tw is : %.0f F \n",tw);
tf=(Tc+tw)/(2); // from eq 12.19
printf("\t tf is : %.0f F \n",tf);
kf=0.077; //table 4, Btu/(hr)*(ft^2)*(F/ft)
sf=0.60; // from table 6
muf=0.21; // cp, from fig 14
ho=206; // Btu/(hr)*(ft^2)*(F), from fig 12.9
printf("\t Correct ho to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho);
Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F)
printf("\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Uc);
Ac=(Qw/(174*delt));
printf("\t clean surface required for condensation : %.2e ft^2 \n",Ac);
As=1210*0.22;
printf("\t clean surface required for subcooling : %.0f ft^2 \n",As);
AG=As+Ac;
printf("\t total clean surface : %.0f ft^2 \n",AG);
UC=(Qw/(AG*delt));
printf("\t weighted clean overall coefficient : %.0f Btu/(hr)*(ft^2)*(F) \n",UC);
A2=0.1963; // actual surface supplied for each tube,ft^2,from table 10
A=(Nt*L*A2); // ft^2
printf("\t total surface area is : %.2e ft^2 \n",A);
UD=((Qw)/((A)*(delt)));
printf("\t actual design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD);
Rd=((UC-UD)/((UD)*(UC))); // (hr)*(ft^2)*(F)/Btu
printf("\t actual Rd is : %.5f (hr)*(ft^2)*(F)/Btu \n",Rd);
printf("\t pressure drop for annulus \n");
B=30;
as=33*0.25*(30/144)*1; // eq 7.1
printf("\t as is : %.2f ft^2 \n",as);
Gs=(W/as);
printf("\t Gs is : %.2e lb/(hr)*(ft^2) \n",Gs); // eq 7.2
mu1=0.0218; // at 283F
De=0.0608; // ft, from fig 15
Res=(De*Gs)/(mu1);
printf("\t reynolds number is : %.2e \n",Res);
f=0.00125; // fig 29
N=(12*L/B); // eq 7.43
printf("\t number crosses : %.0f \n",N);
row1=0.527; //lb/ft^3
s=0.00844;
Ds=2.75; // ft
delPs=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(1)))/(2); // using eq 12.47,psi
printf("\t delPs is : %.1f psi \n",delPs);
printf("\t pressure drop for inner pipe \n");
mu2=1.74; // fig 14
D=0.0517; // ft
s=1;
Ret=(D*Gt/mu2);
printf("\t reynolds number : %.2e \n",Ret);
f=0.00019; // ft^2/in^2
delPt=((f*(Gt^2)*(L)*(n))/(5.22*(10^10)*(D)*(1)*(1))); // using eq.7.45,psi
printf("\t delPt is : %.1f psi \n",delPt);
X1=0.23; // X1=((V^2)/(2*g)),using fig.27
delPr=((4*n*X1)/(s)); // using eq.7.46,psi
printf("\t delPr is : %.1f psi \n",delPr);
delPT=delPt+delPr; // using eq.7.47,psi
printf("\t delPT is : %.1f psi \n",delPT);
printf("\t allowable delPa is 10 psi \n");
// end
|