blob: e98294e4de4914e821edf36539c59c07754e4420 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
//Determine the current in parallel branches and supply current
clc;
clear;
Xl=%i*100; // Inductance
R=10; // Resistance
V=10;
Xco=-%i*100;
Q=abs(Xl)/R;
Z0=Q*abs(Xco);
I0=V/Z0;
Ic=V/Xco;
Il=V/Xl;
Pi=V*I0; // Power Input
Pc=(I0^2)*10; // Copper Loss
// Frequency reduced to fo/2
Xl1=Xl/2; // New Inductive reactance at half the initial frequency
Xco1=Xco*2; // New Capacitative reactance at half the initial frequency
Z1=R+Xl1; // Net impedance of the branch containing Resistance and inductor
Znet= Z1*Xco1/(Xco1+Z1); // Net Impedance of the circuit
I1=V/Znet; // Net Current for reduced frequency
ti1=atand(imag(I1)/real(I1)); // Phase Angle
// Frequncy increased to 2fo
Xl2=2*Xl;// New Inductive reactance at double the initial frequency
Xco2=Xco/2;// New Capacitative reactance at double the initial frequency
Z2=R+Xl2;// Net impedance of the branch containing resistance and inductor
Zt=Z2*Xco2/(Z2+Xco2);// Net Impedance of the circuit
I2=V/Zt; // Net Current
ti2=atand(imag(I2)/real(I2));
printf('a) The Current flowing in the inductor =')
disp('mA',Il*1000)
printf(' The current flowing in the capacitor =')
disp('mA',Ic*1000)
printf(' The supply current = %g mA\n \n',I0*1000)
printf('b) The current for half the intial frequency = %g/_%g mA\n',abs(I1)*1000,ti1)
printf(' The current for double the intial frequency = %g/_%g mA\n',abs(I2)*1000,ti2)
|