summaryrefslogtreecommitdiff
path: root/1202/CH17/EX17.1/17_1.sce
blob: 52e2e255a2167195834740b836b83eaf653194e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
clear
clc

//Example 17.1
disp('Example 17.1')

//In this solution we assume that a sampled signal is given to us at a very fast
//sampling rate and then we resample from it for our computations
//This depicts how data is in practical situations. 
//Since computers are digital data is always discrete
//A more kiddish way of writing this code would have been to make a function
//which takes time as input and gives signal value as output ie generate a 
//continuous signal definition. Then no matter what our sampling time is 
//we can always get the desired values by calling the function say func(Ts*k)
//where Ts denotes sampling time and k is the index no.(ie deltaT*k)
//In principle this will also work fine and will reduce the length of the code
//but this will not lead to learning for coding in practical situations

Ts=0.001 //sampling time for analog
t=0:Ts:5;
n=length(t);
square_base=0.5*squarewave((t-0.5)*2*%pi/3)+0.5;
ym=square_base+0.25*sin(t*2*%pi*9);
subplot(2,2,1)
plot(t,[square_base' ym'])
xtitle('Fig 17.6 (a)','Time(min)','Output');
 

//Analog Filter
tauf1=0.1;tauf2=0.4;
s=%s;
F1=syslin('c',1/(tauf1*s+1));
F2=syslin('c',1/(tauf2*s+1));
yf1=csim(ym,t,F1);
yf2=csim(ym,t,F2);
subplot(2,2,2);
plot(t,[yf1' yf2' square_base'])
legend("$\tau_F=0.1\ min$","$\tau_F=0.4\ min$",position=3);
xtitle('Fig 17.6 (b)','Time(min)','Output');
 
 //Note that analog filtering can also be achieved by perfect sampling in EWMA digital filter
 //Since Exponentially weighted digital filter is an exact discretization of analog
 //filter if we take Ts=0.001 ie the perfect sampling of data we get identical answers
 //from digital or analog filter. You can try this by chaning Ts1 or Ts2 to 0.001

//Digital filtering
Ts1=0.05;Ts2=0.1;
alpha1=exp(-Ts1/tauf1);
alpha2=exp(-Ts2/tauf1);
samples1=1:Ts1/Ts:n;
samples2=1:Ts2/Ts:n;
yf1=zeros(length(samples1),1);
yf2=zeros(length(samples2),1);

for k=1:length(samples1)-1
    yf1(k+1)=alpha1*yf1(k)+(1-alpha1)*ym(samples1(k));
end
for k=1:length(samples2)-1
    yf2(k+1)=alpha2*yf2(k)+(1-alpha2)*ym(samples2(k));
end

subplot(2,2,3);
plot(t(samples1)',[yf1],color='blue');
plot(t(samples2)',yf2,color='red');
plot(t,square_base,color='black');
legend("$\Delta t=0.05 \ min$","$\Delta t=0.1\  min$",position=3);
xtitle('Fig 17.6 (c)','Time(min)','Output');
 


//Moving Filter
N1=3;
N2=7;
yf1=zeros(1,length(samples1))
yf2=zeros(1,length(samples1))
for k=N1+1:length(samples1)
    yf1(k)=yf1(k-1)+1/N1*(ym(samples1(k))-ym(samples1(k-N1)));
end
for k=N2+1:length(samples1)
    yf2(k)=yf2(k-1)+1/N2*(ym(samples1(k))-ym(samples1(k-N2)));
end
//for k=N2+1:n
//    yf2(k)=yf2(k-1)+1/N2*(ym(k)-ym(k-N2));
//end
subplot(2,2,4);
plot(t(samples1),[yf1' yf2'])
plot(t,square_base,color='black');
legend("$N^*=3$","$N^*=7$",position=4);
xtitle('Fig 17.6 (d)','Time(min)','Output');
 


//Now for the gaussian noise
scf();
Ts=0.001 //sampling time for analog
t=0:Ts:5;
n=length(t);
square_base=0.5*squarewave((t-0.5)*2*%pi/3)+0.5;
ym=square_base+grand(1,length(t),"nor", 0, sqrt(0.1));//0.1 is for setting variance=0.1
subplot(2,2,1)
plot(t,[square_base' ym'])
xtitle('Fig 17.6 (a)','Time(min)','Output');
 

//Analog Filter
tauf1=0.1;tauf2=0.4;
s=%s;
F1=syslin('c',1/(tauf1*s+1));
F2=syslin('c',1/(tauf2*s+1));
yf1=csim(ym,t,F1);
yf2=csim(ym,t,F2);
subplot(2,2,2);
plot(t,[yf1' yf2' square_base'])
legend("$\tau_F=0.1\ min$","$\tau_F=0.4\ min$",position=3);
xtitle('Fig 17.6 (b)','Time(min)','Output');
 

//Digital filtering
Ts1=0.05;Ts2=0.1;
alpha1=exp(-Ts1/tauf1);
alpha2=exp(-Ts2/tauf1);
samples1=1:Ts1/Ts:n;
samples2=1:Ts2/Ts:n;
yf1=zeros(length(samples1),1);
yf2=zeros(length(samples2),1);

for k=1:length(samples1)-1
    yf1(k+1)=alpha1*yf1(k)+(1-alpha1)*ym(samples1(k));
end
for k=1:length(samples2)-1
    yf2(k+1)=alpha2*yf2(k)+(1-alpha2)*ym(samples2(k));
end

subplot(2,2,3);
plot(t(samples1)',[yf1],color='blue');
plot(t(samples2)',yf2,color='red');
plot(t,square_base,color='black');
legend("$\Delta t=0.05 \ min$","$\Delta t=0.1\  min$",position=3);
xtitle('Fig 17.6 (c)','Time(min)','Output');
 


//Moving Filter
N1=3;
N2=7;
yf1=zeros(1,length(samples1))
yf2=zeros(1,length(samples1))
for k=N1+1:length(samples1)
    yf1(k)=yf1(k-1)+1/N1*(ym(samples1(k))-ym(samples1(k-N1)));
end
for k=N2+1:length(samples1)
    yf2(k)=yf2(k-1)+1/N2*(ym(samples1(k))-ym(samples1(k-N2)));
end
//for k=N2+1:n
//    yf2(k)=yf2(k-1)+1/N2*(ym(k)-ym(k-N2));
//end
subplot(2,2,4);
plot(t(samples1),[yf1' yf2'])
plot(t,square_base,color='black');
legend("$N^*=3$","$N^*=7$",position=4);
xtitle('Fig 17.6 (d)','Time(min)','Output');
 


mprintf("Please note that for guassian noise\n results...
    will be different from book owing to randomness\n...
    we do not know the seed for the random noise")