1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
//Harriot P,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436.
//Chapter-7 Ex7.6 Pg No.300
//Title:Fraction of O2,Power of agitator, k_L_a and average dissolved oxygen concentration.
//======================================================================================================================
clear
clc
// COMMON INPUT
Vol_reactor=200;//Volume of reactor (m3)
D=4;//Diameter of reactor (m)
depth=12;//Depth of reactor (m)
u_g=3;//Superficial velocity (cm/sec)
T_C=30;//Temperature (°C)
T_K=273+T_C;//Temperature (K)
f_O2=0.21;//Fraction of O2 in air
myu_soln=1.5*(10^(-3));//Viscosity of solution (Pa sec)
R=0.08206;//Gas constant (m3 atm/ K kmol)
r_O2_peak=45*(10^(-3));//Flow rate of O2 at peak demand
Da_by_Dt=(1/3);
Da=1.333;//(m)
N=120;//(rpm)
N_conv=(N/60);//(sec-1)
Press_top=1;//Pressure at the top of the vessel (atm)
rho=1000;//Density of water (kg/m3)
ug_sup1=3*(10^(-2));//based on 30(°C) and 1 (atm)
V=151;//Volume of solution calculated Ex7.6.a (m3)
ug_sup1=3*(10^(-2));//based on 30(°C) and 1 atm.
Press_top=1;//Pressure at the top of the vessel (atm)
Press_bottom=2;//From Ex7.6.c
ug_sup2=ug_sup1/Press_bottom;// at 2atm superficial velocity (cm/sec)
ug_ave=(ug_sup1+ug_sup2)/2;//Average superficial velocity (cm/sec)
depth=12;//Depth of reactor (m)
one_atm_water=10.3;//1 atm pressure corresponds to 10.3 (m) height of water
k_H_O2=5.2*10^(4)// Henery's law constant for O2 in water for O2 (atm/mol fraction)
M_O2=32;//Molecular weight of O2
M_H2O=18;//Molecular weight of water
C_O2_critical=1*10^(-3);//Critical O2 Concentration (g/L)
percent_reduction=40/100;//Mass transfer coefficient in the upper region of the reactor is 40% less than the average
kLa_soln=0.22;//Value calculated in Ex7.6.d
r_conv=1.25*10^(-5);//Rate at peak O2 demand (mol/L sec)
depth=12;//Depth of reactor (m)
//CALCULATION (Ex7.6.a )
S=%pi*(D^2)/4;//Cross section area (m2)
V=S*depth;//Volume of solution(m3)
F_air=(S*u_g*(10^(-2))*3600)/(R*(10^(-3))*T_K);
F_O2=f_O2*F_air;//Feed rate of O2 (mol/hr)
F_O2_used=r_O2_peak*V*(10^(3));//O2 used for aerobic fermentation (mol/hr)
F_O2_left=F_O2-F_O2_used;//O2 left after aerobic fermentation(mol/hr)
f_O2_exitgas=F_O2_left/F_air;//Fraction of O2 in exit gas
Percent_O2_exitgas=(f_O2_exitgas)*(100);
Frac_O2_used=((f_O2-f_O2_exitgas)/f_O2);
//CALCULATION (Ex7.6.b )
Re=(rho*N_conv*Da^2)/myu_soln;
N_p=6;//For a standard turbine
N_p_pitched=1.7;//For a pitched-blade turbine
P0=(N_p*rho*(N_conv^3)*(Da^5))*(10^(-3));//Refer equation 7.73 (kW)
//If the turbine is 2 m from the bottom, or 10 m below the surface,the pressure is about 2 atm since 1atm= 10.3 m water
Press_bottom=2
ug_sup2=ug_sup1/Press_bottom;
Q=ug_sup2*S;
N_Ae=Q/(N_conv*(Da^3));
Pg_by_P0=0.55;//From figure 7.15 based on N_Ae value calculated
Pg=Pg_by_P0*P0;//When aerated
P0_pitched=(N_p_pitched/N_p)*P0;
Pg_by_P0_pitched=0.8;//Solution reaching the upper stirrers is already aerated
Pg_pitched=Pg_by_P0_pitched*P0_pitched;
Tot_Pow_no_air=P0+Press_bottom*P0_pitched;//Total power when no air is presented
Tot_Pow_aerated=Pg+Press_bottom*Pg_pitched;//Total power when it is aerated
//CALCULATION (Ex7.6.c )
P_by_V_ave=Tot_Pow_aerated/V;
kLa_O2_sulfite=0.32;//Using figure7.16 based on ave(P/V) value and ug_average value
kLa_soln=0.7*kLa_O2_sulfite;//kLa for this solution is 70% of the value for oxygen absorption in sodium sulfite (sec-1)
y_O2=0.086;//If gas is backmixed
depth_ave=depth/2;
Press_ave=(Press_top+(depth_ave/one_atm_water));//Pressure at average depth (atm)
C_O2_star=(Press_ave*y_O2/k_H_O2)*(1000/M_H2O);//Conversion (mol/L)
r_conv=r_O2_peak/3600;//Rate at peak O2 demand (mol/L sec)
C_ave=(C_O2_star-(r_conv/kLa_soln))
C_ave_conv=C_ave*M_O2*1000;//Converted value of O2 concentration in(mg/L)
//CALCULATION (Ex7.6.d)
depth_ave=depth/2;
Press_ave=(Press_top+(depth_ave/one_atm_water));//Pressure at average depth (atm)
kLa_soln_reduced=kLa_soln*(1-percent_reduction);
C_star_minus_C=r_conv/kLa_soln_reduced;
C_O2_new=(C_O2_star-(C_star_minus_C));
C_O2_new_conv=C_O2_new*M_O2*1000;//Converted value of O2 concentration in(mg/L)
C_O2_star_new=C_O2_star/Press_ave;
//OUTPUT (Ex7.6.a)
mprintf('\n OUTPUT Ex7.6.a');
mprintf('\n==========================================================');
mprintf('\nAt the peak demand, fraction of the oxygen supplied = %.3f ',Frac_O2_used);
//OUTPUT(Ex7.6.b )
mprintf('\n\n\n OUTPUT Ex7.6.b');
mprintf('\n==========================================================');
mprintf('\nThe total power required for the agitator before the air is turned on: %0.0f kW',Tot_Pow_no_air);
mprintf('\nThe total power required for the agitator after the air is turned on: %0.0f kW',Tot_Pow_aerated);
//OUTPUT (Ex7.6.c )
mprintf('\n\n\n OUTPUT Ex7.6.c');
mprintf('\n==========================================================');
mprintf('\nThe calculated value of kLa (mass transfer coefficient) of solution:%0.2f (sec-1)',kLa_soln);
mprintf('\nThe calculated value of average dissolved O2 concentration: %0.2f (mg/L)',C_ave_conv);
//OUTPUT (Ex7.6.d)
mprintf('\n\n\n OUTPUT Ex7.6.d');
mprintf('\n==========================================================');
mprintf('\nThe new calculated value of average dissolved O2 concentration %0.2f (mg/L)',C_O2_new_conv);
if(C_star_minus_C>C_O2_star_new)
mprintf('\nThe reactor is operated above critical O2 concentration ');
else
mprintf('\nThe reactor should be operated at higher air rate otherwise C_O2 would drop to zero')
end
// FILE OUTPUT
fid= mopen('.\Chapter7-Ex6-Output.txt','w');
mfprintf(fid,'\n OUTPUT Ex7.6.a');
mfprintf(fid,'\n==========================================================');
mfprintf(fid,'\nAt the peak demand, fraction of the oxygen supplied = %.3f ',Frac_O2_used);
mfprintf(fid,'\n\n\n OUTPUT Ex7.6.b');
mfprintf(fid,'\n==========================================================');
mfprintf(fid,'\nThe total power required for the agitator before the air is turned on: %0.0f kW',Tot_Pow_no_air);
mfprintf(fid,'\nThe total power required for the agitator after the air is turned on: %0.0f kW',Tot_Pow_aerated);
mfprintf(fid,'\n\n\n OUTPUT Ex7.6.c');
mfprintf(fid,'\n==========================================================');
mfprintf(fid,'\nThe calculated value of kLa (mass transfer coefficient) of solution:%0.2f (sec-1)',kLa_soln);
mfprintf(fid,'\nThe calculated value of average dissolved O2 concentration: %0.2f (mg/L)',C_ave_conv);
mfprintf(fid,'\n\n\n OUTPUT Ex7.6.d');
mfprintf(fid,'\n==========================================================');
mfprintf(fid,'\nThe new calculated value of average dissolved O2 concentration %0.2f (mg/L)',C_O2_new_conv);
if(C_star_minus_C>C_O2_star_new)
mfprintf(fid,'\nThe reactor is operated above critical O2 concentration ');
else
mfprintf(fid,'\nThe reactor should be operated at higher air rate otherwise C_O2 would drop to zero')
end
mclose(fid);
//===================================================END OF PROGRAM======================================================
|